World Library  
Flag as Inappropriate
Email this Article

Brillouin zone

Article Id: WHEBN0000562067
Reproduction Date:

Title: Brillouin zone  
Author: World Heritage Encyclopedia
Language: English
Subject: Tight binding, Silicene, Symmetry (physics), Valleytronics, Carbon nanotube field-effect transistor
Collection: Crystallography
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Brillouin zone

The reciprocal lattices (dots) and corresponding first Brillouin zones of (a) square lattice and (b) hexagonal lattice.

In mathematics and solid state physics, the first Brillouin zone is a uniquely defined primitive cell in reciprocal space. The boundaries of this cell are given by planes related to points on the reciprocal lattice. It is found by the same method as for the Wigner–Seitz cell in the Bravais lattice. The importance of the Brillouin zone stems from the Bloch wave description of waves in a periodic medium, in which it is found that the solutions can be completely characterized by their behavior in a single Brillouin zone.

The first Brillouin zone is the locus of points in reciprocal space that are closer to the origin of the reciprocal lattice than they are to any other reciprocal lattice points (see the derivation of the Wigner-Seitz cell). Another definition is as the set of points in k-space that can be reached from the origin without crossing any Bragg plane. Equivalently, this is the Voronoi cell around the origin of the reciprocal lattice.

There are also second, third, etc., Brillouin zones, corresponding to a sequence of disjoint regions (all with the same volume) at increasing distances from the origin, but these are used less frequently. As a result, the first Brillouin zone is often called simply the Brillouin zone. (In general, the n-th Brillouin zone consists of the set of points that can be reached from the origin by crossing exactly n − 1 distinct Bragg planes.)

A related concept is that of the irreducible Brillouin zone, which is the first Brillouin zone reduced by all of the symmetries in the point group of the lattice (point group of the crystal).

The concept of a Brillouin zone was developed by Léon Brillouin (1889–1969), a French physicist.

Contents

  • Triclinic lattice system TRI(4) 1
  • Monoclinic lattice system MCL(1), MCLC(5) 2
  • Orthorhombic lattice system ORC(1), ORCC(1), ORCI(1), ORCF(3) 3
  • Tetragonal lattice system TET(1), BCT(2) 4
  • Rhombohedral lattice system RHL(2) 5
  • Hexagonal lattice system HEX(1) 6
  • Cubic lattice system CUB(1), BCC(1), FCC(1) 7
  • See also 8
  • References 9
  • External links 10

Triclinic lattice system TRI(4)

Triclinic Lattice type 1a (TRI1a) BZ.
Triclinic Lattice type 1b (TRI1b) BZ.
Triclinic Lattice type 2a (TRI2a) BZ.
Triclinic Lattice type 2b (TRI2b) BZ.

See below for the aflowlib.org standard.

Monoclinic lattice system MCL(1), MCLC(5)

Monoclinic Lattice (MCL) BZ.
Base Centered Monoclinic Lattice type 1 (MCLC1) BZ.
Base Centered Monoclinic Lattice type 2 (MCLC2) BZ.
Base Centered Monoclinic Lattice type 3 (MCLC3) BZ.
Base Centered Monoclinic Lattice type 4 (MCLC4) BZ.
Base Centered Monoclinic Lattice type 5 (MCLC5) BZ.

See below for the aflowlib.org standard.

Orthorhombic lattice system ORC(1), ORCC(1), ORCI(1), ORCF(3)

Simple Orthorhombic Lattice (ORC) BZ.
Base Centered Orthorhombic Lattice (ORCC) BZ.
Body Centered Orthorhombic Lattice (ORCI) BZ.
Face Centered Orthorhombic Lattice type 1 (ORCF1) BZ.
Face Centered Orthorhombic Lattice type 2 (ORCF2) BZ.
Face Centered Orthorhombic Lattice type 3 (ORCF3) BZ.

See below for the aflowlib.org standard.

Tetragonal lattice system TET(1), BCT(2)

Simple Tetragonal Lattice (TET) BZ.
Body Centered Tetragonal Lattice type 1 (BCT1) BZ.
Body Centered Tetragonal Lattice type 2 (BCT2) BZ.

See below for the aflowlib.org standard.

Rhombohedral lattice system RHL(2)

Rhombohedral Lattice type 1 (RHL1) BZ.
Rhombohedral Lattice type 2 (RHL2) BZ.

See below for the aflowlib.org standard.

Hexagonal lattice system HEX(1)

Hexagonal Lattice (HEX) BZ.

See below for the aflowlib.org standard. More details in links below.

Cubic lattice system CUB(1), BCC(1), FCC(1)

Simple Cubic Lattice (CUB) BZ.
Body Centered Cubic Lattice (BCC) BZ.
Face Centered Cubic Lattice (FCC) BZ.

See below for the aflowlib.org standard.

See also

Brillouin-zone construction by 300-keV electrons.

References

External links

  • Brillouin Zone simple lattice diagrams by Thayer Watkins
  • Brillouin Zone 3d lattice diagrams by Technion.
  • DoITPoMS Teaching and Learning Package- "Brillouin Zones"
  • Aflowlib.org consortium database (Duke University)
  • AFLOW Standardization of VASP/QUANTUM ESPRESSO input files (Duke University)
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.