World Library  
Flag as Inappropriate
Email this Article

Topological quantum number

Article Id: WHEBN0002692822
Reproduction Date:

Title: Topological quantum number  
Author: World Heritage Encyclopedia
Language: English
Subject: List of topology topics, Degree of a continuous mapping, Central charge, Vector soliton, Solitons
Collection: Exactly Solvable Models, Quantum Field Theory, Quantum Mechanics, Solitons
Publisher: World Heritage Encyclopedia

Topological quantum number

In physics, a topological quantum number (also called topological charge) is any quantity, in a physical theory, that takes on only one of a discrete set of values, due to topological considerations. Most commonly, topological quantum numbers are topological invariants associated with topological defects or soliton-type solutions of some set of differential equations modeling a physical system, as the solitons themselves owe their stability to topological considerations. The specific "topological considerations" are usually due to the appearance of the fundamental group or a higher-dimensional homotopy group in the description of the problem, quite often because the boundary, on which the boundary conditions are specified, has a non-trivial homotopy group that is preserved by the differential equations. The topological quantum number of a solution is sometimes called the winding number of the solution, or, more precisely, it is the degree of a continuous mapping.

Recent ideas about the nature of phase transitions indicates that topological quantum numbers, and their associated solitons, can be created or destroyed during a phase transition.


  • 1 Particle physics
  • Exactly solvable models 2
  • Solid state physics 3
  • See also 4
  • References 5

Particle physics

In particle physics, an example is given by the Skyrmion, for which the baryon number is a topological quantum number. The origin comes from the fact that the isospin is modelled by SU(2), which is isomorphic to the 3-sphere S^3 and S^3 inherits the group structure of SU(2) through its bijective association, so the isomorphism is in the category of topological groups. By taking real three-dimensional space, and closing it with a point at infinity, one also gets a 3-sphere. Solutions to Skyrme's equations in real three-dimensional space map a point in "real" (physical; Euclidean) space to a point on the 3-manifold SU(2). Topologically distinct solutions "wrap" the one sphere around the other, such that one solution, no matter how it is deformed, cannot be "unwrapped" without creating a discontinuity in the solution. In physics, such discontinuities are associated with infinite energy, and are thus not allowed.

In the above example, the topological statement is that the 3rd homotopy group of the three sphere is


and so the baryon number can only take on integer values.

A generalization of these ideas is found in the Wess-Zumino-Witten model.

Exactly solvable models

Additional examples can be found in the domain of exactly solvable models, such as the sine-Gordon equation, the Korteweg–de Vries equation, and the Ishimori equation. The one-dimensional sine-Gordon equation makes for a particularly simple example, as the fundamental group at play there is


and so is literally a winding number: a circle can be wrapped around a circle an integer number of times. Quantum sine-Gordon model is equivalent to massive Thirring model. Fundamental excitations are fermions: topological quantum number \mathbb{Z} is the number of fermions. After quantization of sine-Gordon model the topological charge become 'fractional'. Consistent consideration of ultraviolet renormalization shows that a fractional number of fermions repelled over the ultraviolet cutoff. So the \mathbb{Z} gets multiplied by a fractional number depending on Planck constant.

Solid state physics

In solid state physics, certain types of crystalline dislocations, such as screw dislocations, can be described by topological solitons. An example includes screw-type dislocations associated with Germanium whiskers.

See also


  • Thouless, D. J. (1998). Topological Quantum Numbers in Nonrelativistic Physics. World Scientific.  
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.