World Library  
Flag as Inappropriate
Email this Article

Generalized valence bond

Article Id: WHEBN0003465811
Reproduction Date:

Title: Generalized valence bond  
Author: World Heritage Encyclopedia
Language: English
Subject: Jaguar (software), GAMESS (US), Electronic structure, Valence bond theory, Configuration interaction
Publisher: World Heritage Encyclopedia

Generalized valence bond

The generalized valence bond (GVB) method is one of the simplest and oldest valence bond method that uses flexible orbitals in the general way used by modern valence bond theory. The method was developed by the group of William A. Goddard, III around 1970.[1][2]


The generalized Coulson–Fischer theory for the hydrogen molecule, discussed in Modern valence bond theory, is used to describe every electron pair in a molecule. The orbitals for each electron pair are expanded in terms of the full basis set and are non-orthogonal. Orbitals from different pairs are forced to be orthogonal - the strong orthogonality condition. This condition simplifies the calculation but can lead to some difficulties.


GVB code in some programs, particularly GAMESS (US), can also be used to do a variety of restricted open-shell Hartree–Fock calculations,[3] such as those with one or three electrons in two pi-electron molecular orbitals while retaining the degeneracy of the orbitals. This wave function is essentially a two-determinant function, rather than the one-determinant function of the restricted Hartree–Fock method.


  1. ^ Goddard, W. A., Dunning, T. H., Hunt, W. J. and Hay, P. J. (1973), "Generalized valence bond description of bonding in low-lying states of molecules", Accounts of Chemical Research 6 (11): 368,  
  2. ^ Goodgame MM, Goddard WA (February 1985), "Modified generalized valence-bond method: A simple correction for the electron correlation missing in generalized valence-bond wave functions; Prediction of double-well states for Cr2 and Mo2",  
  3. ^ Muller, Richard P.; Langlois, Jean-Marc; Ringnalda, Murco N.; Friesner, Richard A.; Goddard, William A. (1994), "A generalized direct inversion in the iterative subspace approach for generalized valence bond wave functions", The Journal of Chemical Physics 100 (2): 1226,  

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.