World Library  
Flag as Inappropriate
Email this Article

Filter (signal processing)

Article Id: WHEBN0023434533
Reproduction Date:

Title: Filter (signal processing)  
Author: World Heritage Encyclopedia
Language: English
Subject: High-pass filter, Low-pass filter, Positive feedback, Signal processing, Electronic filters
Collection: Filter Theory, Signal Processing, Telecommunication Theory
Publisher: World Heritage Encyclopedia

Filter (signal processing)

In signal processing, a filter is a device or process that removes from a signal some unwanted component or feature. Filtering is a class of signal processing, the defining feature of filters being the complete or partial suppression of some aspect of the signal. Most often, this means removing some frequencies and not others in order to suppress interfering signals and reduce background noise. However, filters do not exclusively act in the frequency domain; especially in the field of image processing many other targets for filtering exist. Correlations can be removed for certain frequency components and not for others without having to act in the frequency domain.

There are many different bases of classifying filters and these overlap in many different ways; there is no simple hierarchical classification. Filters may be:


  • Linear continuous-time filters 1
    • Terminology 1.1
  • Technologies 2
  • The transfer function 3
    • Classification 3.1
  • Impedance matching 4
  • Some filters for specific purposes 5
    • Filters for removing noise from data 5.1
  • References 6

Linear continuous-time filters

Linear continuous-time circuit is perhaps the most common meaning for filter in the signal processing world, and simply "filter" is often taken to be synonymous. These circuits are generally designed to remove certain frequencies and allow others to pass. Circuits that perform this function are generally linear in their response, or at least approximately so. Any nonlinearity would potentially result in the output signal containing frequency components not present in the input signal.

The modern design methodology for linear continuous-time filters is called network synthesis. Some important filter families designed in this way are:

The difference between these filter families is that they all use a different polynomial function to approximate to the ideal filter response. This results in each having a different transfer function.

Another older, less-used methodology is the image parameter method. Filters designed by this methodology are archaically called "wave filters". Some important filters designed by this method are:


Some terms used to describe and classify linear filters:

  • The frequency response can be classified into a number of different bandforms describing which frequency bands the filter passes (the passband) and which it rejects (the stopband):
    • Low-pass filter – low frequencies are passed, high frequencies are attenuated.
    • High-pass filter – high frequencies are passed, low frequencies are attenuated.
    • Band-pass filter – only frequencies in a frequency band are passed.
    • Band-stop filter or band-reject filter – only frequencies in a frequency band are attenuated.
    • Notch filter – rejects just one specific frequency - an extreme band-stop filter.
    • Comb filter – has multiple regularly spaced narrow passbands giving the bandform the appearance of a comb.
    • All-pass filter – all frequencies are passed, but the phase of the output is modified.
  • Cutoff frequency is the frequency beyond which the filter will not pass signals. It is usually measured at a specific attenuation such as 3dB.
  • Roll-off is the rate at which attenuation increases beyond the cut-off frequency.
  • Transition band, the (usually narrow) band of frequencies between a passband and stopband.
  • Ripple is the variation of the filter's insertion loss in the passband.
  • The order of a filter is the degree of the approximating polynomial and in passive filters corresponds to the number of elements required to build it. Increasing order increases roll-off and brings the filter closer to the ideal response.


Filters can be built in a number of different technologies. The same transfer function can be realised in several different ways, that is the mathematical properties of the filter are the same but the physical properties are quite different. Often the components in different technologies are directly analogous to each other and fulfill the same role in their respective filters. For instance, the resistors, inductors and capacitors of electronics correspond respectively to dampers, masses and springs in mechanics. Likewise, there are corresponding components in distributed element filters.

  • Electronic filters were originally entirely passive consisting of resistance, inductance and capacitance. Active technology makes design easier and opens up new possibilities in filter specifications.
  • Digital filters operate on signals represented in digital form. The essence of a digital filter is that it directly implements a mathematical algorithm, corresponding to the desired filter transfer function, in its programming or microcode.
  • Mechanical filters are built out of mechanical components. In the vast majority of cases they are used to process an electronic signal and transducers are provided to convert this to and from a mechanical vibration. However, examples do exist of filters that have been designed for operation entirely in the mechanical domain.
  • Distributed element filters are constructed out of components made from small pieces of transmission line or other distributed elements. There are structures in distributed element filters that directly correspond to the lumped elements of electronic filters, and others that are unique to this class of technology.
  • Waveguide filters consist of waveguide components or components inserted in the waveguide. Waveguides are a class of transmission line and many structures of distributed element filters, for instance the stub (electronics), can be implemented in waveguides also.
  • Crystal filters use quartz crystals as resonators, or some other piezoelectric material.
  • Acoustic filters
  • Optical filters were originally developed for purposes other than signal processing such as lighting and photography. With the rise of optical fiber technology, however, optical filters increasingly find signal processing applications and signal processing filter terminology, such as longpass and shortpass, are entering the field.

The transfer function

The transfer function of a filter is most often defined in the domain of the complex frequencies. The back and forth passage to/from this domain is operated by the Laplace transform and its inverse (therefore, here below, the term "input signal" shall be understood as "the Laplace transform of" (the time representation of) the input signal, and so on).

The transfer function \ H(s) of a filter is the ratio of the output signal \ Y(s) to that of the input signal \ X(s) as a function of the complex frequency \ s:

\ H(s)=\frac{Y(s)}{X(s)}

with \ s = \sigma + j \omega.

The transfer function of all linear time-invariant filters generally share certain characteristics:

  • For filters which are constructed of discrete components, their transfer function must be the ratio of two polynomials in \ s, i.e. a rational function of \ s. The order of the transfer function will be the highest power of \ s encountered in either the numerator or the denominator.
  • The polynomials of the transfer function will all have real coefficients. Therefore, the poles and zeroes of the transfer function will either be real or occur in complex conjugate pairs.
  • Since the filters are assumed to be stable, the real part of all poles (i.e. zeroes of the denominator) will be negative, i.e. they will lie in the left half-plane in complex frequency space.

Distributed element filters do not, in general, produce rational functions but can often approximate to them.

The proper construction of a transfer function involves the Laplace transform, and therefore it is needed to assume null initial conditions, because

\mathcal{L}\left\{\frac{df}{dt}\right\} = s\cdot\mathcal{L} \left\{ f(t) \right\}-f(0),

And when f(0)=0 we can get rid of the constants and use the usual expression

\mathcal{L}\left\{\frac{df}{dt}\right\} = s\cdot\mathcal{L} \left\{ f(t) \right\}

An alternative to transfer functions is to give the behavior of the filter as a convolution. The convolution theorem, which holds for Laplace transforms, guarantees equivalence with transfer functions.


Filters may be specified by family and bandform. A filter's family is specified by the approximating polynomial used and each leads to certain characteristics of the transfer function of the filter. Some common filter families and their particular characteristics are:

Each family of filters can be specified to a particular order. The higher the order, the more the filter will approach the "ideal" filter; but also the longer the impulse response is and the longer the latency will be. An ideal filter has full transmission in the pass band, complete attenuation in the stop band, and an abrupt transition between the two bands, but this filter has infinite order (i.e., the response cannot be expressed as a linear differential equation with a finite sum) and infinite latency (i.e., its compact support in the Fourier transform forces its time response to be ever lasting).

Here is an image comparing Butterworth, Chebyshev, and elliptic filters. The filters in this illustration are all fifth-order low-pass filters. The particular implementation – analog or digital, passive or active – makes no difference; their output would be the same.

As is clear from the image, elliptic filters are sharper than all the others, but they show ripples on the whole bandwidth.

Any family can be used to implement a particular bandform of which frequencies are transmitted, and which, outside the passband, are more or less attenuated. The transfer function completely specifies the behavior of a linear filter, but not the particular technology used to implement it. In other words, there are a number of different ways of achieving a particular transfer function when designing a circuit. A particular bandform of filter can be obtained by transformation of a prototype filter of that family.

Impedance matching

Impedance matching structures invariably take on the form of a filter, that is, a network of non-dissipative elements. For instance, in a passive electronics implementation, it would likely take the form of a ladder topology of inductors and capacitors. The design of matching networks shares much in common with filters and the design invariably will have a filtering action as an incidental consequence. Although the prime purpose of a matching network is not to filter, it is often the case that both functions are combined in the same circuit. The need for impedance matching does not arise while signals are in the digital domain.

Similar comments can be made regarding power dividers and directional couplers. When implemented in a distributed element format, these devices can take the form of a distributed element filter. There are four ports to be matched and widening the bandwidth requires filter-like structures to achieve this. The inverse is also true: distributed element filters can take the form of coupled lines.

Some filters for specific purposes

Filters for removing noise from data


  • Miroslav D. Lutovac, Dejan V. Tošić, Brian Lawrence Evans, Filter Design for Signal Processing Using MATLAB and Mathematica, Miroslav Lutovac, 2001 ISBN 0201361302.
  • B. A. Shenoi, Introduction to Digital Signal Processing and Filter Design, John Wiley & Sons, 2005 ISBN 0471656380.
  • L. D. Paarmann, Design and Analysis of Analog Filters: A Signal Processing Perspective, Springer, 2001 ISBN 0792373731.
  • J.S.Chitode, Digital Signal Processing, Technical Publications, 2009 ISBN 8184316461.
  • Leland B. Jackson, Digital Filters and Signal Processing, Springer, 1996 ISBN 079239559X.
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.