World Library  
Flag as Inappropriate
Email this Article

Congenital cataract

Article Id: WHEBN0036498342
Reproduction Date:

Title: Congenital cataract  
Author: World Heritage Encyclopedia
Language: English
Subject: Xiao Huang-Chi, Blindness, Ophthalmology, Optic papillitis, Vision disorder
Collection:
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Congenital cataract

Congenital cataract
Classification and external resources
Bilateral cataracts in an infant due to congenital rubella syndrome.
ICD-10 Q12.0
MedlinePlus 001615
Congenital cataract in an adult

The term congenital cataract refers to a lens opacity present at birth. Congenital cataracts cover a broad spectrum of severity: whereas some lens opacities do not progress and are visually insignificant, others can produce profound visual impairment.

Congenital cataracts may be unilateral or bilateral. They can be classified by morphology, presumed or defined genetic etiology, presence of specific metabolic disorders, or associated ocular anomalies or systemic findings.[1]

Epidemiology

  • Congenital cataract are responsible for nearly 10% of all vision loss in children world wide.
  • Congenital cataract are one of the most common treatable causes of visual impairment and blindness during infancy, with an estimated prevalence of 1 to 6 cases per 10,000 live births.

Morphologic configurations

Congenital cataracts occur in a variety of morphologic configurations, including lamellar, polar, sutural, coronary, cerulean, nuclear, capsular, complete, membranous.

Etiology

In general, approximately one-third of congenital cataracts are a component of a more extensive syndrome or disease (e.g., cataract resulting from congenital rubella syndrome), one-third occur as an isolated inherited trait, and one-third result from undetermined causes. Metabolic diseases tend to be more commonly associated with bilateral cataracts.

Genetic & Metabolic Infections Anomalies Toxic
Down syndrome

Hallermann-Streiff syndrome

Lowe syndrome

Galactosemia

Cockayne syndrome

Marfan syndrome

Trisomy 13- 15

Hypoglycemia

Alport syndrome

Myotonic dystrophy

Fabry disease

Hypoparathyroidism

Conradi syndrome

Incontinentia pigmenti

Toxoplasmosis

Other (Coxsackievirus, Syphilis, Varicella-Zoster, HIV, and Parvo B19)

Rubella

Cytomegalovirus

Herpes Simplex (HSV-1, HSV-2)

Aniridia

Anterior segment dysgenesis

Persistent fetal vasculature (PFV)

Posterior lenticonus

Corticosteroids

Radiation

Genes involved in congenital cataract

Approximately 50% of all congenital cataract cases may have a genetic cause which is quite heterogeneous. It is known that different mutations in the same gene can cause similar cataract patterns, while the highly variable morphologies of cataracts within some families suggest that the same mutation in a single gene can lead to different phenotypes. More than 25 loci and genes on different chromosomes have been associated with congenital cataract. Mutations in distinct genes, which encode the main cytoplasmic proteins of human lens, have been associated with cataracts of various morphologies, including genes encoding crystallins (CRYA, CRYB, and CRYG), lens specific connexins (Cx43, Cx46, and Cx50), major intrinsic protein (MIP) or Aquaporin, cytoskeletal structural proteins, paired-like homeodomain transcription factor 3 (PITX3), avian musculoaponeurotic fibrosarcoma (MAF), and heat shock transcription factor 4 (HSF4).[2]

Evaluation

All newborns should have screening eye examinations, including an evaluation of the red reflexes.

  • The red reflex test is best performed in a darkened room and involves shining a bright direct ophthalmoscope into both eyes simultaneously from a distance of 1– 2 ft. This test can be used for routine ocular screening by nurses, pediatricians, and family practitioners.
  • Retinoscopy through the child's undilated pupil is helpful for assessing the potential visual significance of an axial lens opacity in a pre-verbal child. Any central opacity or surrounding cortical distortion greater than 3 mm can be assumed to be visually significant.
  • Laboratory Tests : In contrast to unilateral cataracts, bilateral congenital cataracts may be associated with many systemic and metabolic diseases. A basic laboratory evaluation for bilateral cataracts of unknown etiology in apparently healthy children includes:[1]
- Urine test for reducing substance, galactose 1-phosphate uridyltransferase, galactokinase, amino acids
- Infectious diseases: TORCH and varicella titers, VDRL
- Serum calcium, phosphorus, glucose and ferritin

Surgery

In general, the younger the child, the greater the urgency in removing the cataract, because of the risk of amblyopia. For optimal visual development in newborns and young infants, a visually significant unilateral congenital cataract should be detected and removed before age 6 weeks, and visually significant bilateral congenital cataracts should be removed before age 10 weeks.[1]

References

  1. ^ a b c Basic and clinical science course (2011–2012). Pediatric ophthalmology and Strabismus. American Academy of Ophthalmology.  
  2. ^ Santana, A; Waiswo, M (Mar–Apr 2011). "The genetic and molecular basis of congenital cataract.". Arquivos brasileiros de oftalmologia 74 (2): 136–42.  
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.