Antiinflammatory

Anti-inflammatory refers to the property of a substance or treatment that reduces inflammation. Anti-inflammatory drugs make up about half of analgesics, remedying pain by reducing inflammation as opposed to opioids, which affect the central nervous system.

Medications

Steroids

Many steroids, to be specific glucocorticoids, reduce inflammation or swelling by binding to glucocorticoid receptors. These drugs are often referred to as corticosteroids.

Non-steroidal anti-inflammatory drugs

Non-steroidal anti-inflammatory drugs (NSAIDs), alleviate pain by counteracting the cyclooxygenase (COX) enzyme. On its own, COX enzyme synthesizes prostaglandins, creating inflammation. In whole, the NSAIDs prevent the prostaglandins from ever being synthesized, reducing or eliminating the pain.

Some common examples of NSAIDs are: aspirin, ibuprofen, and naproxen. The newer specific COX-inhibitors are not classified together with the traditional NSAIDs even though they presumably share the same mode of action.

On the other hand, there are analgesics that are commonly associated with anti-inflammatory drugs but that have no anti-inflammatory effects. An example is paracetamol, called acetaminophen in the U.S. and sold under the brand name of Tylenol. As opposed to NSAIDs, which reduce pain and inflammation by inhibiting COX enzymes, paracetamol has recently been shown to block the reuptake of endocannabinoids,[1][2] which only reduces pain, likely explaining why it has minimal effect on inflammation.

Long-term use of NSAIDs can cause gastric erosions, which can become stomach ulcers and in extreme cases can cause severe haemorrhage, resulting in death. The risk of death as a result of use of NSAIDs is 1 in 12,000 for adults aged 16–45.[3] The risk increases almost twentyfold for those over 75.[3] Other dangers of NSAIDs are exacerbating asthma and causing kidney damage.[3] Apart from aspirin, prescription and over-the-counter NSAIDs also increase the risk of myocardial infarction and stroke.[4]

Immune Selective Anti-Inflammatory Derivatives (ImSAIDs)

ImSAIDs are a class of peptides being developed by IMULAN BioTherapeutics, LLC, which were discovered to have diverse biological properties, including anti-inflammatory properties. ImSAIDs work by altering the activation and migration of inflammatory cells, which are immune cells responsible for amplifying the inflammatory response.[5][6] The ImSAIDs represent a new category of anti-inflammatory and are unrelated to steroid hormones or non-steroidal anti-inflammatories.

The ImSAIDs were discovered by scientists evaluating biological properties of the submandibular gland and saliva. Early work in this area demonstrated that the submandibular gland released a host of factors that regulate systemic inflammatory responses and modulate systemic immune and inflammatory reactions. It is now well accepted that the immune, nervous, and endocrine systems communicate and interact to control and modulate inflammation and tissue repair. One of the neuroendocrine pathways, when activated, results in the release of immune-regulating peptides from the submandibular gland upon neuronal stimulation from sympathetic nerves. This pathway or communication is referred to as the cervical sympathetic trunk-submandibular gland (CST-SMG) axis, a regulatory system that plays a role in the systemic control of inflammation.[7]

Early work in identifying factors that played a role in the CST-SMG axis lead to the discovery of a seven amino acid peptide, called the submandibular gland peptide-T. SGP-T was demonstrated to have biological activity and thermoregulatory properties related to endotoxin exposure.[8] SGP-T, an isolate of the submandibular gland, demonstrated its immunoregulatory properties and potential role in modulating the cervical sympathetic trunk-submandibular gland (CST-SMG) axis, and subsequently was shown to play an important role in the control of inflammation.

One SGP-T derivative is a three-amino acid sequence shown to be a potent anti-inflammatory molecule with systemic effects. This three-amino acid peptide is phenylalanine-glutamine-glycine (FEG) and its D-isomeric form (feG) have become the foundation for the ImSAID category.[9] Cellular Effects of feG: The cellular effects of the ImSAIDs are characterized in a number of publications. feG and related peptides are known to modulate leukocyte (white blood cells) activity by influencing cell surface receptors to inhibit excessive activation and tissue infiltration.

One lead ImSAID, the tripeptide FEG (Phe-Glu-Gly) and its D-isomer feG are known to alter leukocyte adhesion involving actions on αMβ2 integrin, and inhibit the binding of CD16b (FCyRIII) antibody to human neutrophils.[10] feG has also been shown to decrease circulating neutrophil and eosinophil accumulation, decrease intracellular oxidative activity, and reduce the expression of CD49d after antigen exposure.[11][12][13]

Natural bio-active compounds

Many bio-actives compounds showed Anti-inflammatory activities on albino rat. Anti-inflammatory activity of Plumbago zylanica consists of Bioactive compound Plumbagin showed high activity in very low concentration.[14]

Long term effects

Anti-inflammatory treatment trials for existing Alzheimer's disease have typically shown little to no effect on halting or reversing the disease.[15][16] Research and clinical trials continue.[17] Two studies from 2012 and 2013 found regular use of aspirin for over ten years is associated with an increase in the risk of macular degeneration.[18][19]

Ice treatment

Applying ice, or even cool water, to a tissue injury has an anti-inflammatory effect and is often suggested as an injury treatment and pain management technique for athletes. One common approach is Rest, Ice, Compression and Elevation. Cool temperatures inhibit local blood circulation, which reduces swelling in the injured tissue.

Health supplements

In addition to medical drugs, some herbs and health supplements have anti-inflammatory qualities, including devil's claw (Harpagophytum procumbens), hyssop, ginger (Zingiber officinale), turmeric (Curcuma longa), Arnica montana (containing helenalin), and willow bark (containing salicylic acid). Other anti-inflammatory dietary sources include pomegranate (Punica granatum), green tea (Camellia sinensis), cat's claw (Uncaria tometosa and Uncaria guianensis), Indian olibaum (Boswelia serrata), and pineapple bromelain (Ananas comosus).[20] Cannabichromene, a cannabinoid, also has anti-inflammatory effect.[21] Honokiol inhibits platelet aggregation, and works as an inverse agonist at the CB2 receptor. Black seed (Nigella sativa) has shown anti-inflammatory effect due to its high thymoquinone content.[22] St. John's wort's chief constituent, hyperforin, has been found to be a potent COX-1 and 5-LO inhibitor, with anti-inflammatory effect several fold that of aspirin.

Anti-inflammatory foods

Prostaglandins are hormone-like substances that affect the body in variety of ways, also regulating inflammatory mediation. An anti-flammatory diet includes less foods that create inflammation-causing prostaglandins (PGE2) in the body, and more foods that create anti-flammatory prostaglandins (PGE1 and PGE3).[23]

Suggested diets to reduce inflammation include those rich in vegetables and low in simple carbohydrates and fats, such as saturated fats and trans fats.[24] Anti-inflammatory foods include most colorful fruits and vegetables, oily fish (which contain higher levels of omega-3 fatty acids), nuts, seeds, and certain spices, such as ginger. Extra-virgin olive oil contains the chemical oleocanthal that acts similarly to ibuprofen. Those following an anti-inflammatory diet will avoid refined oils and sugars, and show a preference for so-called anti-inflammatory foods in their meal choices.[25][26]

Omega-3 fatty acids have been shown to disrupt inflammation cell signaling pathways by binding to the GPR120 receptor.[27]

Exercise

Developing research has demonstrated that many of the benefits of exercise are mediated through the role of skeletal muscle as an endocrine organ. That is, contracting muscles release multiple substances known as myokines which promote the growth of new tissue, tissue repair, and various anti-inflammatory functions, which in turn reduce the risk of developing various inflammatory diseases.[28]

References

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.