World Library  
Flag as Inappropriate
Email this Article

Barrel vault

Article Id: WHEBN0000618699
Reproduction Date:

Title: Barrel vault  
Author: World Heritage Encyclopedia
Language: English
Subject: List of architectural vaults, All Saints' Church, Northampton, Vault (architecture), Kimbell Art Museum, Silvacane Abbey
Collection: Arches and Vaults, Medieval Architecture
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Barrel vault

Nave of Lisbon Cathedral with a barrel vaulted soffit. Note the absence of clerestory windows, all of the light being provided by the Rose window at one end of the vault.

A barrel vault, also known as a tunnel vault or a wagon vault, is an architectural element formed by the extrusion of a single curve (or pair of curves, in the case of a pointed barrel vault) along a given distance. The curves are typically circular in shape, lending a semi-cylindrical appearance to the total design. The barrel vault is the simplest form of a vault: effectively a series of arches placed side by side, i.e., one after another. It is a form of barrel roof.

As with all arch-based constructions, there is an outward thrust generated against the walls underneath a barrel vault. There are several mechanisms for absorbing this thrust. One is, of course, to make the walls exceedingly thick and strong - this is a primitive and sometimes unacceptable method. A more elegant method is to build two or more vaults parallel to each other; the forces of their outward thrusts will thus negate each other. This method was most often used in construction of churches, where several vaulted naves ran parallel down the length of the building. However, the outer walls of the outermost vault would still have to be quite strong or reinforced by buttressing. The third and most elegant mechanism to resist the lateral thrust was to create an intersection of two barrel vaults at right angles, thus forming a groin vault.

Barrel vaults are known from Ancient Egypt, and were used extensively in Roman architecture. They were also used to replace the Cloaca Maxima with a system of underground sewers. Early barrel vault designs occur in northern Europe, Turkey, Morocco and other regions. In medieval Europe the barrel vault was an important element of stone construction in monasteries, castles, tower houses and other structures. This form of design is observed in cellars, crypts, long hallways, cloisters and even great halls.

Contents

  • Theory and early history 1
  • Engineering issues 2
  • Early occurrences 3
  • Modern examples 4
  • In unconventional usage 5
  • See also 6
  • References 7
  • External links 8

Theory and early history

Roman barrel vault at the villa rustica Bad Neuenahr-Ahrweiler, Germany.

Barrel vaulting was known and employed by early civilizations, including Enna) shows that the aboveground barrel vault was known and used in Hellenistic Sicily in 3rd Century BC, indicating that the technique was also known to Ancient Greeks.

Ancient Romans most probably inherited their knowledge of barrel vaulting from Etruscans. Romans were the first to use this building method extensively on large-scale projects, and were probably the first to use scaffolding to aid them in construction of vaults spanning over widths greater than anything seen before. However, Roman builders gradually began to prefer the use of groin vault; though more complex to erect, this type of vault did not require heavy, thick walls for support (see below), and thus allowed for more spacious buildings with greater openings and much more light inside, such as thermae.

After the fall of the Roman empire, few buildings large enough to require much in the way of vaulting were built for several centuries. In the early Romanesque period, a return to stone barrel vaults was seen for the first great cathedrals; their interiors were fairly dark, due to thick, heavy walls needed to support the vault. One of the largest and most famous churches enclosed from above by a vast barrel vault was the church of Cluny Abbey, built between the 11th and 12th centuries.

In 13th and 14th Century, with the advance of the new Andrea Palladio, and perhaps most glorious of all, St. Peter's Basilica in Rome, where a huge barrel vault spans the 27 m (89 ft)-wide nave.[2]

Engineering issues

A caponier is a large space enclosed by a roof and walls, covered with barrel vaults, as a covered means of access to the outworks

With a barrel vault design the vectors of pressure result in a downward force on the crown while the lower portions of the arches realise a lateral force pushing outwards.[3] As an outcome this form of design is subject to failure unless the sides are anchored or buttressed to very heavy building elements or substantial earthwork sidings. For example, at Muchalls Castle in Scotland adjacent walls to the barrel vaulted chambers are up to 4,6 meters (15 feet) thick, adding the buttressing strength needed to secure the curved design. Well documented cases exist of the long term stress effects on inadequately laterally supported barrel vaults such as the 17th century church of Guimarei.[4]

Pointed barrel vault showing direction of lateral forces.

The inherent difficulty of adequately lighting barrel vaulted structures has been widely acknowledged.[5] The intrinsic engineering issue is the need to avoid fenestration punctures in stonework barrel vaults. Such openings could compromise the integrity of the entire arch system. Thus the Romanesque medieval builders had to resort to techniques of small windows, large buttresses, or other forms of interior wall cross-bracing to achieve the desired lighting outcomes. In many of the monasteries a natural solution was cloisters which could have high barrel-vaulted construction with an open courtyard to allow ample lighting.

Since 1996 structural engineers have applied Newtonian mechanics to calculate numeric stress loads for ancient stonework barrel vaults.[6] These analyses have typically used a finite element algorithm to calculate gravity induced stresses from the self weight of an arched system. In fact, for structural engineers, analysis of the barrel vault has become a benchmark test of a structural engineering computer model "because of the complex membrane and inextensional bending states of stress" involved.

In terms of comparison to other vaulting techniques the barrel vault is inherently a weaker design compared to the more complex groin vault. The barrel vault structure must rest on long walls creating less stable lateral stress, whereas the groin vault design can direct stresses almost purely vertically on the apexes.[7]

Early occurrences

Barrel vault in a mausoleum at the Recoleta Cemetery, Buenos Aires, Argentina

Modern examples

There are numerous contemporary examples of barrel vault design in Victorian and modern architecture, including:

In unconventional usage

Beyond the classical use of the barrel vault in macro-architectural design (e.g. as a major structural roofing element), there are a variety of derivative applications clearly based on the original concept and shape of the barrel vault. These applications arise in the fields of surgery, skylight design, children's toys and micro-structure design (such as bus shelters). While none of these applications rival the majesty of the ancient and Classical predecessors, they demonstrate the pervasiveness of the barrel vault as an architectural concept in contemporary times.

In the field of bone surgery the technique of a "barrel vault" shaped incision is not only a well-defined state-of-the-art surgical procedure, but the name barrel vault is given to this technique by orthopedic surgeons.[10] The Wohlfahrt study cited documents results of this surgical procedure on the human tibia in 91 such operations.

See also

References

General
  • Roth, Leland M (1993). Understanding Architecture: Its Elements History and Meaning. Oxford, UK: Westview Press. p. 29.  
Specific
  1. ^ Dietrich Wildung, Egypt, From Prehistory to the Romans, Taschen, 2001.
  2. ^ http://www.stpetersbasilica.org/Interior/Nave/Nave.htm
  3. ^ "Mount Holyoke college, The Art of Cathedrals: Stresses in barrel vaulted design". Mtholyoke.edu. Retrieved 2014-05-01. 
  4. ^ "S. Huerta & G. Lopez, ''Stability and consolidation of an ashlar barrel vault with great deformations: the church of Guimarei'', Transactions of the Wessex society, 17 November 2006". Library.witpress.com. Retrieved 2014-05-01. 
  5. ^ Friedrich Ragette, Traditional Domestic Architecture of the Arab Region, American University of Shadah (2003)
  6. ^ Gui-Rong Liu, Mesh Free Methods: Moving Beyond the Finite Element Method, CRC Press (2003)
  7. ^ Robert A. Scott, The Gothic Enterprise: A Guide to Understanding the Medieval Cathedral University of California Press (2003)
  8. ^ "Victorian architecture". Victorianweb.org. 2006-09-12. Retrieved 2014-05-01. 
  9. ^ Indiana University new library description
  10. ^ A. Wohlfahrt, P. Heppt, A. Goldmann and P. Wirtz, High tibial barrel-vault osteotomy. A clinical study and statistical analysis of 91 long-term results PZ Orthop Ihre Grenzgeb. 1991 Jan-Feb;129(1):72-9

External links

  • Barrel vault design description of static force loads
  • Glossary of medieval architecture
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.