World Library  
Flag as Inappropriate
Email this Article


Article Id: WHEBN0028759678
Reproduction Date:

Title: Carfilzomib  
Author: World Heritage Encyclopedia
Language: English
Subject: Chemotherapy, Cell-cycle nonspecific antineoplastic agents, Hazardous drugs, Thiopurine, BRAF (gene)
Collection: Epoxides, Morpholines, Proteasome Inhibitors
Publisher: World Heritage Encyclopedia


Systematic (IUPAC) name
Clinical data
Trade names Kyprolis
Licence data US FDA:
Pregnancy cat.
Legal status
Routes Intravenous
CAS number
ATC code L01
Synonyms PX-171-007
Chemical data
Formula C40H57N5O7 
Mol. mass 719.91 g mol

Carfilzomib (marketed under the trade name Kyprolis, Onyx Pharmaceuticals, Inc.) is an anti-cancer drug acting as a selective proteasome inhibitor. Chemically, it is a tetrapeptide epoxyketone and an analog of epoxomicin.[1]

The U.S. Food and Drug Administration (FDA) approved it on 20 July 2012 for use in patients with multiple myeloma who have received at least two prior therapies, including treatment with bortezomib and an immunomodulatory therapy and have demonstrated disease progression on or within 60 days of completion of the last therapy. Approval is based on response rate. Clinical benefit, such as improvement in survival or symptoms, has not been verified.[2]

The abbreviation CFZ is common for referring to carfilzomib, but abbreviating drug names is not best practice in medicine.


  • Discovery, early development and regulatory approval 1
  • Mechanism 2
  • Clinical trials 3
    • Completed 3.1
    • ASPIRE trial 3.2
  • References 4
  • External links 5

Discovery, early development and regulatory approval

Carfilzomib is derived from epoxomicin, a natural product that was shown by the laboratory of Craig Crews at Yale University to inhibit the proteasome.[3] The Crews laboratory subsequently invented a more specific derivative of epoxomicin named YU101,[4] which was licensed to Proteolix, Inc. Craig Crews, Raymond Deshaies from Caltech, Phil Whitcome, the former CEO of Neurogen and Larry Lasky, a venture capitalist, founded Proteolix, and along with other researchers and scientists, advanced YU101. The scientists at Proteolix invented a new, distinct compound that had potential use as a drug in humans, known as carfilzomib. Proteolix advanced carfilzomib to multiple Phase 1 and 2 clinical trials, including a pivotal Phase 2 clinical trial designed to seek accelerated approval.[5] Clinical trials for carfilzomib continue under Onyx Pharmaceuticals, which acquired Proteolix in 2009.[5]

In January 2011, the FDA granted carfilzomib fast-track status, allowing Onyx to initiate a rolling submission of its new drug application for carfilzomib.[6] In December 2011, the FDA granted Onyx standard review designation,[7][8] for its new drug application submission based on the 003-A1 study, an open-label, single-arm Phase 2b trial. The trial evaluated 266 heavily-pretreated patients with relapsed and refractory multiple myeloma who had received at least two prior therapies, including bortezomib and either thalidomide or lenalidomide.[9] It costs approximately $10,000 per 28-day cycle.[10]


Carfilzomib irreversibly binds to and inhibits the chymotrypsin-like activity of the 20S proteasome, an enzyme that degrades unwanted cellular proteins. Inhibition of proteasome-mediated proteolysis results in a build-up of polyubiquinated proteins, which may cause cell cycle arrest, apoptosis, and inhibition of tumor growth.[1]

Clinical trials


A single-arm, Phase II trial (003-A1) of carfilzomib in patients with relapsed and refractory multiple myeloma showed that single-agent carfilzomib demonstrated a clinical benefit rate of 36 percent in the 266 patients evaluated and had an overall response rate of 22.9 percent and median duration of response of 7.8 months. The FDA approval of carfilzomib was based on results of the 003-A1 trial.[11]

In a Phase II trial (004), carfilzomib had a 53 percent overall response rate among patients with relapsed and/or refractory multiple myeloma who had not previously received bortezomib. This study also included a bortezomib-treated cohort. Results were reported separately.[12] This study also found prolonged carfilzomib treatment was tolerable, with approximately 22 percent of patients continuing treatment beyond one year. The 004 trial was a smaller study originally designed to investigate the impact of carfilzomib treatment in relationship to bortezomib treatment in less heavily pretreated (1-3 prior regimens) patients.[13]

A Phase II trial (005), which assessed the safety, pharmacokinetics, pharmacodynamics and efficacy of carfilzomib, in patients with multiple myeloma and varying degrees of renal impairment, where nearly 50 percent of patients were refractory to both bortezomib and lenalidomide, demonstrated that pharmacokinetics and safety were not influenced by the degree of baseline renal impairment. Carfilzomib was tolerable and demonstrated efficacy.[14]

In another Phase II trial (006) of patients with relapsed and/or refractory multiple myeloma, carfilzomib in combination with lenalidomide and dexamethasone demonstrated an overall response rate of 69 percent.[15]

A Phase II trial (007) for multiple myeloma and solid tumors showed promising results.[16][17]

In Phase II trials of carfilzomib, the most common grade 3 or higher treatment-emergent adverse events were thrombocytopenia, anemia, lymphoenia, neutropenia, pneumonia, fatigue and hyponatremia.[18]

In a frontline Phase I/II study, the combination of carfilzomib, lenalidomide, and low-dose dexamethasone was highly active and well tolerated, permitting the use of full doses for an extended time in newly-diagnosed multiple myeloma patients, with limited need for dose modification. Responses were rapid and improved over time, reaching 100 percent very good partial response.[19]

ASPIRE trial

A phase III confirmatory clinical trial, known as the ASPIRE trial, comparing carfilzomib, lenalidomide and dexamethasone versus lenalidomide and dexamethasone in patients with relapsed multiple myeloma is ongoing.[20] Its results were presented at an American Society of Hematology meeting in December 2014. They indicated that significantly more patients responded to the three-drug regimen than responded to the two-drug regimen.[21]


  1. ^ a b Carfilzomib, NCI Drug Dictionary
  2. ^ "FDA Approves Kyprolis for Some Patients with Multiple Myeloma". FDA. 2012-07-20. Retrieved 2013-07-23. 
  3. ^ Meng, L; Mohan, R.; Kwok, B.H.; Elofsson, M.; Sin, N.; Crews, C.M. (1999). "Epoxomicin, a potent and selective proteasome inhibitor, exhibits in vivo antiinflammatory activity". Proc Natl Acad Sci USA 96 (18): 10403–8.  
  4. ^ Myung, J; Kim, K.B.; Lindsten, K.; Dantuma, N.P.; Crews, C.M. (2001). "Lack of proteasome active site allostery as revealed by subunit-specific inhibitors". Mol Cell 7 (2): 411–20.  
  5. ^ a b "Carfilzomib: From Discovery To Drug". Chemical & Engineering News. 2012-08-27. Retrieved 2013-07-30. 
  6. ^ "Onyx multiple myeloma drug wins FDA fast-track status". San Francisco Business Times. 2011-01-31. Retrieved 2011-09-01. 
  7. ^ "Beacon Breaking News – Carfilzomib to Get Standard, Not Priority, FDA Review". The Myeloma Beacon. Retrieved 2012-02-27. 
  8. ^ "Fast Track, Accelerated Approval and Priority Review; Accelerating Availability of New Drugs for Patients with Serious Diseases". FDA. Retrieved 2012-02-27. 
  9. ^ "PX-171-003-A1, an open-label, single-arm, phase (Ph) II study of carfilzomib (CFZ) in patients (pts) with relapsed and refractory multiple myeloma (R/R MM): Long-term follow-up and subgroup analysis". ASCO 2011; Abstract 8027. 2011. Retrieved 2011-09-01. 
  10. ^ "FDA Approves Kyprolis (Carfilzomib) For Relapsed And Refractory Multiple Myeloma". The Myeloma Beacon. Retrieved 2012-07-20. 
  11. ^ "Carfilzomib Prescribing Information". NCI Drug Dictionary. Retrieved 2013-07-23. 
  12. ^ Vij, R (2012). "An open-label, single-arm, phase 2 study of single-agent carfilzomib in patients with relapsed and/or refractory multiple myeloma who have been previously treated with bortezomib". Br J Haematol 158 (6): 739–748.  
  13. ^ Vij, R (2012). "An open-label, single-arm, phase ii (PX-171-004) study of single-agent carfilzomib in bortezomib-naive patients with relapsed and/or refractory multiple myeloma.". Blood 119 (24): 5661–70.  
  14. ^ Badros, AZ (2013). "Carfilzomib in multiple myeloma patients with renal impairment: pharmacokinetics and safety.". Leukemia 27 (8): 1707–14.  
  15. ^ "European Hematology Association (EHA) 18th Congress. June 13-16, 2013.". The Myeloma Beacon. 2013. Retrieved 2013-07-13. 
  16. ^ "Nikoletta Lendval, MD PhD et al. Phase II Study of Infusional Carfilzomib in Patients with Relapsed or Refractory Multiple Myeloma.". Presented at: 54th ASH Annual Meeting and Exposition: December 2012. Retrieved 2013-07-23. 
  17. ^ "Phase II results of Study PX-171-007: A phase Ib/II study of carfilzomib (CFZ), a selective proteasome inhibitor, in patients with selected advanced metastatic solid tumors" - ASCO 2009; Abstract 3515.
  18. ^ "Siegel DS, Martin T, Wang, M, et al. Results of PX-171- 003-A1, an open-label, single-arm, phase 2 study of carfilzomib in patients with relapsed and refractory multiple myeloma. Presented at: 52nd ASH Annual Meeting and Exposition; December 4-7, 2010; Orlando, Florida.". 2011-03-09. Retrieved 2011-09-01. 
  19. ^ "Final Results of a Frontline Phase 1/2 Study of Carfilzomib Lenalidomide, and Low-Dose Dexamethasone (CRd) in Multiple Myeloma (MM)". ASH 20111; Abstract 631. Retrieved 2012-02-27. 
  20. ^ "Phase 3 Study Comparing Carfilzomib, Lenalidomide, and Dexamethasone (CRd) Versus Lenalidomide and Dexamethasone (Rd) in Subjects With Relapsed Multiple Myeloma". 2011-08-04. Retrieved 2011-09-01. 
  21. ^ Berkrot, Bill (6 December 2014). "Addition of Amgen drug boosts benefits in relapsed myeloma: study". Reuters. Retrieved 6 December 2014. 

External links

  • "Carfilzomib Prescribing Information". NCI Drug Dictionary. 
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.