World Library  
Flag as Inappropriate
Email this Article

Fair coin

Article Id: WHEBN0009597100
Reproduction Date:

Title: Fair coin  
Author: World Heritage Encyclopedia
Language: English
Subject: Gambler's fallacy, Feller's coin-tossing constants, Absorbing Markov chain, Bernoulli trial, Law of averages
Collection: Games (Probability), Statistical Terminology
Publisher: World Heritage Encyclopedia

Fair coin

In probability theory and statistics, a sequence of independent Bernoulli trials with probability 1/2 of success on each trial is metaphorically called a fair coin. One for which the probability is not 1/2 is called a biased or unfair coin. In theoretical studies, the assumption that a coin is fair is often made by referring to an ideal coin.

Some coins have been alleged to be unfair when spun on a table, but the results have not been substantiated or are not significant.require('Module:No globals')

local p = {}

-- articles in which traditional Chinese preceeds simplified Chinese local t1st = { ["228 Incident"] = true, ["Chinese calendar"] = true, ["Lippo Centre, Hong Kong"] = true, ["Republic of China"] = true, ["Republic of China at the 1924 Summer Olympics"] = true, ["Taiwan"] = true, ["Taiwan (island)"] = true, ["Taiwan Province"] = true, ["Wei Boyang"] = true, }

-- the labels for each part local labels = { ["c"] = "Chinese", ["s"] = "simplified Chinese", ["t"] = "traditional Chinese", ["p"] = "pinyin", ["tp"] = "Tongyong Pinyin", ["w"] = "Wade–Giles", ["j"] = "Jyutping", ["cy"] = "Cantonese Yale", ["poj"] = "Pe̍h-ōe-jī", ["zhu"] = "Zhuyin Fuhao", ["l"] = "literally", }

-- article titles for wikilinks for each part local wlinks = { ["c"] = "Chinese language", ["s"] = "simplified Chinese characters", ["t"] = "traditional Chinese characters", ["p"] = "pinyin", ["tp"] = "Tongyong Pinyin", ["w"] = "Wade–Giles", ["j"] = "Jyutping", ["cy"] = "Yale romanization of Cantonese", ["poj"] = "Pe̍h-ōe-jī", ["zhu"] = "Bopomofo", }

-- for those parts which are to be treated as languages their ISO code local ISOlang = { ["c"] = "zh", ["t"] = "zh-Hant", ["s"] = "zh-Hans", ["p"] = "zh-Latn-pinyin", ["tp"] = "zh-Latn", ["w"] = "zh-Latn-wadegile", ["j"] = "yue-jyutping", ["cy"] = "yue", ["poj"] = "hak", ["zhu"] = "zh-Bopo", }

local italic = { ["p"] = true, ["tp"] = true, ["w"] = true, ["j"] = true, ["cy"] = true, ["poj"] = true, } -- Categories for different kinds of Chinese text local cats = { ["c"] = "", ["s"] = "", ["t"] = "", }

function p.Zh(frame) -- load arguments module to simplify handling of args local getArgs = require('Module:Arguments').getArgs local args = getArgs(frame) return p._Zh(args) end function p._Zh(args) local uselinks = not (args["links"] == "no") -- whether to add links local uselabels = not (args["labels"] == "no") -- whether to have labels local capfirst = args["scase"] ~= nil

        local t1 = false -- whether traditional Chinese characters go first
        local j1 = false -- whether Cantonese Romanisations go first
        local testChar
        if (args["first"]) then
                 for testChar in mw.ustring.gmatch(args["first"], "%a+") do
          if (testChar == "t") then
           t1 = true
          if (testChar == "j") then
           j1 = true
        if (t1 == false) then
         local title = mw.title.getCurrentTitle()
         t1 = t1st[title.text] == true

-- based on setting/preference specify order local orderlist = {"c", "s", "t", "p", "tp", "w", "j", "cy", "poj", "zhu", "l"} if (t1) then orderlist[2] = "t" orderlist[3] = "s" end if (j1) then orderlist[4] = "j" orderlist[5] = "cy" orderlist[6] = "p" orderlist[7] = "tp" orderlist[8] = "w" end -- rename rules. Rules to change parameters and labels based on other parameters if args["hp"] then -- hp an alias for p ([hanyu] pinyin) args["p"] = args["hp"] end if args["tp"] then -- if also Tongyu pinyin use full name for Hanyu pinyin labels["p"] = "Hanyu Pinyin" end if (args["s"] and args["s"] == args["t"]) then -- Treat simplified + traditional as Chinese if they're the same args["c"] = args["s"] args["s"] = nil args["t"] = nil elseif (not (args["s"] and args["t"])) then -- use short label if only one of simplified and traditional labels["s"] = labels["c"] labels["t"] = labels["c"] end local body = "" -- the output string local params -- for creating HTML spans local label -- the label, i.e. the bit preceeding the supplied text local val -- the supplied text -- go through all possible fields in loop, adding them to the output for i, part in ipairs(orderlist) do if (args[part]) then -- build label label = "" if (uselabels) then label = labels[part] if (capfirst) then label = mw.language.getContentLanguage():ucfirst( There are statistical procedures for checking whether a coin is fair.


  • Role in statistical teaching and theory 1
  • Fair results from a biased coin 2
  • See also 3
  • References 4
  • Further reading 5

Role in statistical teaching and theory

The probabilistic and statistical properties of coin-tossing games are often used as examples in both introductory and advanced text books and these are mainly based in assuming that a coin is fair or "ideal". For example, Feller[1] uses this basis to introduce both the idea of random walks and to develop tests for homogeneity within a sequence of observations by looking at the properties of the runs of identical values within a sequence. The latter leads on to a runs test. A time-series consisting of the result from tossing a fair coin is called a Bernoulli process.

Fair results from a biased coin

If a cheat has altered a coin to prefer one side over another (a biased coin), the coin can still be used for fair results by changing the game slightly. John von Neumann gave the following procedure:[2]

  1. Toss the coin twice.
  2. If the results match, start over, forgetting both results.
  3. If the results differ, use the first result, forgetting the second.

The reason this process produces a fair result is that the probability of getting heads and then tails must be the same as the probability of getting tails and then heads, as the coin is not changing its bias between flips and the two flips are independent. This works only if getting one result on a trial doesn't change the bias on subsequent trials, which is the case for most non-malleable coins (but not for processes such as the Polya urn). By excluding the events of two heads and two tails by repeating the procedure, the coin flipper is left with the only two remaining outcomes having equivalent probability. This procedure only works if the tosses are paired properly; if part of a pair is reused in another pair, the fairness may be ruined. Also, the coin must not be so biased that one side has a probability of zero.

This method may be improved slightly by also considering sequences of four tosses. That is, if the coin is flipped twice but the results match, and the coin is flipped twice again but the results match now for the opposite side, then the first result can be used. This is because HHTT and TTHH are equally likely. This can be extended to any power of 2.

See also


  1. ^
  2. ^

Further reading

  • Available from Andrew Gelman's website
  • John von Neumann, "Various techniques used in connection with random digits," in A.S. Householder, G.E. Forsythe, and H.H. Germond, eds., Monte Carlo Method, National Bureau of Standards Applied Mathematics Series, 12 (Washington, D.C.: U.S. Government Printing Office, 1951): 36-38.
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.