World Library  
Flag as Inappropriate
Email this Article


Article Id: WHEBN0000410013
Reproduction Date:

Title: Homoplasy  
Author: World Heritage Encyclopedia
Language: English
Subject: Cladistics, Comparative biology, Autapomorphy
Publisher: World Heritage Encyclopedia


Example: Two succulent plant genera, Euphorbia and Astrophytum, are distantly related, but have independently converged on a similar body form.

Convergent evolution describes the independent evolution of similar features in species of different lineages. Convergent evolution creates analogous structures that have similar form or function, but were not present in the last common ancestor of those groups. [1] The wing is a classic example of convergent evolution in action. The cladistic term for the same phenomenon is homoplasy, from Greek for same form.[2] Flying insects, birds, and bats have all evolved the capacity of flight independently. They have "converged" on this useful trait.

Traits arising through convergent evolution are termed analogous structures, in contrast to homologous structures, which have a common origin, but not necessarily similar function.[1] The British anatomist Richard Owen was the first scientist to recognise the fundamental difference between analogies and homologies.[3] Bat and pterosaur wings are an example of analogous structures, while the bat wing is homologous to human and other mammal forearms, sharing an ancestral state despite serving different functions. The opposite of convergent evolution is divergent evolution, whereby related species evolve different traits. On a molecular level, this can happen due to random mutation unrelated to adaptive changes; see long branch attraction.

Convergent evolution is similar to, but distinguishable from, the phenomena of parallel evolution. Parallel evolution occurs when two independent but similar species evolve in the same direction and thus independently acquire similar characteristics—for instance gliding frogs have evolved in parallel from multiple types of tree frog.


In morphology, analogous traits will often arise where different species live in similar ways and/or similar environment, and so face the same environmental factors. When occupying similar ecological niches (that is, a distinctive way of life) similar problems lead to similar solutions.[4]

In biochemistry, physical and chemical constraints on mechanisms cause some to active site arrangements to independently evolve multiple times in separate enzyme superfamilies (for example, see also catalytic triad).[5]


Convergence has been associated with Darwinian evolution in the popular imagination since at least the 1940s. For example, Elbert A. Rogers argued that "if we lean toward the theories of Darwin might we not assume that man was [just as] apt to have developed in one continent as another?"[6] The degree to which convergence affects the products of evolution is the subject of a popular controversy.

In his book, Wonderful Life, Stephen Jay Gould argues that if the tape of life were re-wound and played back, life would have taken a very different course.[7] Simon Conway Morris counters this argument, arguing that convergence is a dominant force in evolution and that since the same environmental and physical constraints act on all life, there is an "optimum" body plan that life will inevitably evolve toward, with evolution bound to stumble upon intelligence, a trait of primates, corvids, and cetaceans, at some point.[8]

Convergence is difficult to quantify, so progress on this issue may require exploitation of engineering specifications (as of wing aerodynamics) and comparably rigorous measures of "very different course" in terms of phylogenetic (molecular) distances.


Convergent evolution is a topic touched by many different fields of biology, may of which use slightly different nomenclature. This section attempts to clarify some of those terms.

Cladistic definition

In cladistics, a homoplasy or a homoplastic character state is a trait (genetic, morphological etc.) that is shared by two or more taxa because of convergence, parallelism or reversal.[9] Homoplastic character states require extra steps to explain their distribution on a most parsimonious cladogram. Homoplasy is only recognizable when other characters imply an alternative hypothesis of grouping, because in the absence of such evidence, shared features are always interpreted as similarity due to common descent.[10] Homoplasious traits or changes (derived trait values acquired in unrelated organisms in parallel) can be compared with synapomorphy (a derived trait present in all members of a monophyletic clade), autapomorphy (derived trait present in only one member of a clade), or apomorphies, derived traits acquired in all members of a monophyletic clade following divergence where the most recent common ancestor had the ancestral trait (the ancestral trait manifesting in paraphyletic species as a plesiomorphy).

Re-evolution vs. convergent evolution

In some cases, it is difficult to tell whether a trait has been lost then re-evolved convergently, or whether a gene has simply been 'switched off' and then re-enabled later. Such a re-emerged trait is called an atavism. From a mathematical standpoint, an unused gene (selectively neutral) has a steadily decreasing probability of retaining potential functionality over time. The time scale of this process varies greatly in different phylogenies; in mammals and birds, there is a reasonable probability of remaining in the genome in a potentially functional state for around 6 million years.[11]

Parallel vs. convergent evolution

For a particular trait, proceeding in each of two lineages from a specified ancestor to a later descendant, parallel and convergent evolutionary trends can be strictly defined and clearly distinguished from one another.[12] When both descendants are similar in a particular respect, evolution is defined as parallel if the ancestors considered were also similar, and convergent if they were not.

When the ancestral forms are unspecified or unknown, or the range of traits considered is not clearly specified, the distinction between parallel and convergent evolution becomes more subjective. For instance, the striking example of similar placental and marsupial forms is described by Richard Dawkins in The Blind Watchmaker as a case of convergent evolution,[13] because mammals on each continent had a long evolutionary history prior to the extinction of the dinosaurs under which to accumulate relevant differences. Stephen Jay Gould describes many of the same examples as parallel evolution starting from the common ancestor of all marsupials and placentals. Many evolved similarities can be described in concept as parallel evolution from a remote ancestor, with the exception of those where quite different structures are co-opted to a similar function. For example, consider Mixotricha paradoxa, a microbe that has assembled a system of rows of apparent cilia and basal bodies closely resembling that of ciliates but that are actually smaller symbiont micro-organisms, or the differently oriented tails of fish and whales. On the converse, any case in which lineages do not evolve together at the same time in the same ecospace might be described as convergent evolution at some point in time.

The definition of a trait is crucial in deciding whether a change is seen as divergent, or as parallel or convergent. In the image above, note that, since serine and threonine possess similar structures with an alcohol side-chain, the example marked "divergent" would be termed "parallel" if the amino acids were grouped by similarity instead of being considered individually. As another example, if genes in two species independently become restricted to the same region of the animals through regulation by a certain transcription factor, this may be described as a case of parallel evolution — but examination of the actual DNA sequence will probably show only divergent changes in individual base-pair positions, since a new transcription factor binding site can be added in a wide range of places within the gene with similar effect.

A similar situation occurs considering the homology of morphological structures. For example, many insects possess two pairs of flying wings. In beetles, the first pair of wings is hardened into wing covers with little role in flight, while in flies the second pair of wings is condensed into small halteres used for balance. If the two pairs of wings are considered as interchangeable, homologous structures, this may be described as a parallel reduction in the number of wings, but otherwise the two changes are each divergent changes in one pair of wings.

Similar to convergent evolution, evolutionary relay describes how independent species acquire similar characteristics through their evolution in similar ecosystems, but not at the same time (dorsal fins of sharks and ichthyosaurs).



Protease active sites

Main article: catalytic triad

The enzymology of proteases provides some of the clearest examples of convergent evolution. These examples reflect the intrinsic chemical constraints on enzymes, leading evolution to independently converge on equivalent solutions repeatedly.[14][5]

Serine and cysteine proteases use different amino acid functional groups (alcohol or thiol) as a nucleophile. In order to activate that nucleophile, they orient an acidic and basic residue in a catalytic triad. The chemical and physical constraints on enzyme catalysis have caused identical triad arrangements to have evolved independently over 20 times in different enzyme superfamilies.[5]

Threonine proteases use the amino acid threonine as their catalytic nucleophile. Unlike cysteine and serine, threonine is a secondary alcohol (i.e. has a methyl group). The methyly group of threonine greatly restricts the possible orientations of triad and substrate as the methyl clashes with either the enzyme backbone or histidine base. Consequently, most threonine proteases use an N-terminal threonine in order to avoid such steric clashes. Several evolutionarily independent enzyme superfamilies with different protein folds use the N-terminal residue as a nucleophile. This commonality of active site but difference of protein fold indicates that the active site evolved convergently in those families.[5][15]



A classic comparison is between the marsupial fauna of Australia and the placental mammals of the Old World. The two lineages are clades—that is, they each share a common ancestor that belongs to their own group, and are more closely related to one another than to any other clade—but very similar forms evolved in each isolated population.[8] Many body plans, for instance sabre-toothed cats and flying squirrels,[16] evolved independently in both populations. The same streamlined shape has been converged upon by fish (e.g. herrings), marine mammals (e.g. dolphins) and even the extinct ichthyosaur (Mesozoic era). This bodyplan is an adaptation to being an active predators in a high drag environment. It is also debated whether earless seals and eared seals are a single marine group, or represent two separate episodes of carnivorans turning to a marine environment.[17]


A classical example of an analogy is the ability to fly in birds and bats. Both groups can move by powered flight, but flight has evolved independently in the two groups. The ability to fly does not make birds and bats close relatives. The ancestors of both bats and birds were terrestrial quadrupeds, and each has independently evolved powered flight via adaptations of their forelimbs. Although both forelimb adaptations are superficially "wing-shaped," they are substantially dissimilar in construction. The bat wing is a membrane stretched across four extremely elongated fingers, while the airfoil of the bird wing is made of feathers, which are strongly attached to the forearm (the ulna) and the highly fused bones of the wrist and hand (the carpometacarpus), with only tiny remnants of two fingers remaining, each anchoring a single feather. (Both bats and birds have retained the thumb for specialized functions.) So, while the wings of bats and birds are functionally convergent, they are not anatomically convergent.

Similarly, the extinct pterosaur also shows an independent evolution of vertebrate forelimb to wing. An even more distantly related group with wings is the insects, they not only evolved separately as wings, but from totally different organs, starting from a fundamentally different bodyplan.


Main article: Eye evolution

One of the most well-known examples of convergent evolution is the camera eye of cephalopods (e.g., squid), vertebrates (e.g., mammals) and cnidaria (e.g., box jellies).[19] Their last common ancestor had at most a very simple photoreceptive spot, but a range of processes led to the progressive refinement of this structure to the advanced camera eye — with one subtle difference: The cephalopod eye is "wired" in the opposite direction, with blood and nerve vessels entering from the back of the retina, rather than the front as in vertebrates.[8] The similarity of the structures in other respects, despite the complex nature of the organ, illustrates how there are some biological challenges (e.g. vision) that have an optimal solution.

Insect mouthparts

Insect mouthparts show many examples of organs which can be used to study convergent evolution in the context of form and function. The mouthparts of different insect groups consist of a set of homologous organs, specialised to the function of dietary intake of that insect group (which can be experimentally quantified). Convergent Evolution of many groups of insects led from original biting-chewing mouthparts to different derived function types. They build a proboscis at flower-visiting insects for example,[20][21][22][23][23] which are able to ingest food very efficiently or biting-sucking mouthparts, showing different function mechanisms at different groups of blood-sucking insects.


Convergent evolution is commonly noted when considering the morphology of animal species, but there are many diverse examples of the phenomenon in plant biology as well, such as the multiple origins of C4 photosynthesis.[24] A true fruit such as an apple incorporates one or more ovules and their accessory tissues, but many edible plant-derived tissues commonly regarded as fruits actually arise from different embryological structures. This implies a convergent process in which genetically unrelated precursors assume a common form under selective pressure, in this case the competition for seed dispersal through consumption by animals.[25]

See also

Further reading

  • McGhee, G.R. (2011). Convergent Evolution: Limited Forms Most Beautiful. Vienna Series in Theoretical Biology, Massachusetts Institute of Technology Press, Cambridge (MA). 322 pp.
  • Rasmussen, L.E.L., Lee, T.D., Roelofs, W.L., Zhang, A., Doyle Davies Jr, G. (1996). Insect pheromone in elephants" Nature 379: 684.
  • Convergent Evolution Examples- Ecological Equivalents, Department of Biology, Bellarmine University.
  • Stearns, S. & Hoekstra, R. 2005. Evolution: An introduction.
  • Lowe, Nancy, "Single Centers of Creation", Southern Spaces, 30 November 2009.
  • McMenamin, M.A.S. (1998). The Garden of Ediacara: Discovering the First Complex Life. Columbia University Press.
  • Map of Life : Convergent Evolution Online — University of Cambridge


This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.