Intercellular adhesion molecule-1

Cell adhesion molecules (CAMs) are proteins located on the cell surface[1] involved in binding with other cells or with the extracellular matrix (ECM) in the process called cell adhesion. In essence, cell adhesion molecules help cells stick to each other and to their surroundings.

These proteins are typically transmembrane receptors and are composed of three domains: an intracellular domain that interacts with the cytoskeleton, a transmembrane domain, and an extracellular domain that interacts either with other CAMs of the same kind (homophilic binding) or with other CAMs or the extracellular matrix (heterophilic binding).

Families of CAMs

Most of the CAMs belong to four protein families: Ig (immunoglobulin) superfamily (IgSF CAMs), the integrins, the cadherins, and the selectins.

One classification system involves the distinction between calcium-independent CAMs and calcium-dependent CAMs.[2]

Calcium-independent

IgSF CAMs

Main article: IgSF CAM

Immunoglobulin superfamily CAMs (IgSF CAMs) are either homophilic or heterophilic and bind integrins or different IgSF CAMs.

Lymphocyte homing receptors

These are also known as addressins. Two well-known examples are CD34 and GLYCAM-1.

Calcium-dependent

Integrins

Main article: Integrin

Integrins, one of the major classes of receptors within the ECM,[3] mediates cell-ECM interactions with collagen, fibrinogen, fibronectin, and vitronectin.[4] Integrins provide essential links between the extracellular environment and the intracellular signalling pathways, which can play roles in cell behaviours such as apoptosis, differentiation, survival, and transcription.[5]

Integrins are heterodimeric, as they consist of an alpha and beta subunit.[6] There are currently 18 alpha subunits and 8 beta subunits, which combine to make up 24 different integrin combinations.[4] Within each of the alpha and beta subunits there is a large extracellular domain, a transmembrane domain and a short cytoplasmic domain.[7] The extracellular domain is where the ligand binds through the use of divalent cations. In general, Template:Chem/link increases affinity, Template:Chem/link promotes adhesion to cells, and Template:Chem/link decreases cell adhesion.[5] Integrins regulate their activity within the body by changing conformation. Most exist at rest in a low affinity state, which can be altered to high affinity through an external agonist which causes a conformational change within the integrin, increasing their affinity.[5]

An example of this is the aggregation of platelets;[5] Agonists such as thrombin or collagen trigger the integrin into its high affinity state, which causes increased fibrinogen binding, causing platelet aggregation.

Cadherins

Main article: Cadherin

The cadherins are homophilic Template:Chem/link-dependent glycoproteins.[8] The classic cadherins (E-, N- and P-) are concentrated at the intermediate cell junctions, which link to the actin filament network through specific linking proteins called catenins.[8]

Each cadherin exhibits a unique pattern of tissue distribution, such as epithelial (E-cadherins), placental (P-cadherins), neural (N-cadherins), retinal (R-cadherins), brain (B-cadherins and T-cadherins), and muscle (M-cadherins).[8] Many cell types express combinations of cadherin types.

The extracellular domain has major repeats called extracellular cadherin domains (ECD). Sequences involved in Template:Chem/link binding between the ECDs are necessary for cell adhesion. The cytoplasmic domain has specific regions where catenin proteins bind.[9]

Selectins

Main article: Selectin

The selectins are a family of heterophilic CAMs that bind fucosylated carbohydrates, e.g., mucins. The three family members are E-selectin (endothelial), L-selectin (leukocyte), and P-selectin (platelet). The best-characterized ligand for the three selectins is P-selectin glycoprotein ligand-1 (PSGL-1), which is a mucin-type glycoprotein expressed on all white blood cells.

See also

References

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.