Lucky prime

This article is about the mathematical concept. For other uses, see Lucky number (disambiguation).
Not to be confused with Fortunate number.

In number theory, a lucky number is a natural number in a set which is generated by a "sieve" similar to the Sieve of Eratosthenes that generates the primes.

Begin with a list of integers starting with 1:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25,

Every second number (all even numbers) is eliminated, leaving only the odd integers:

1,    3,    5,    7,    9,   11,   13,   15,   17,   19,   21,   23,   25,  

The second term in this sequence is 3. Every third number which remains in the list is eliminated:

1,    3,          7,    9,         13,   15,         19,   21,         25,

The next surviving number is now 7, so every seventh number that remains is eliminated:

1,    3,          7,    9,         13,   15,               21,         25,

When this procedure has been carried out completely, the survivors are the lucky numbers:


The term was introduced in 1956 in a paper by Gardiner, Lazarus, Metropolis and Ulam. They suggest also calling its defining sieve, "the sieve of Josephus Flavius"[1] because of its similarity with the counting-out game in the Josephus problem.

Lucky numbers share some properties with primes, such as asymptotic behaviour according to the prime number theorem; also, a version of Goldbach's conjecture has been extended to them. There are infinitely many lucky numbers. However, if Ln denotes the n-th lucky number, and pn the n-th prime, then Ln > pn for all sufficiently large n.[2]

Because of these apparent connections with the prime numbers, some mathematicians have suggested that these properties may be found in a larger class of sets of numbers generated by sieves of a certain unknown form, although there is little theoretical basis for this conjecture. Twin lucky numbers and twin primes also appear to occur with similar frequency.

A lucky prime is a lucky number that is prime. It is not known whether there are infinitely many lucky primes. The first few are

3, 7, 13, 31, 37, 43, 67, 73, 79, 127, 151, 163, 193 (sequence OEIS).


External links

  • Peterson, Ivars. MathTrek: Martin Gardner's Lucky Number
  • MathWorld.
  • The Wolfram Demonstrations Project.

Template:Classes of natural numbers

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.