Medicine in Ancient Greece


Ancient Greek medicine revolved around the theory of humours. The most important figure in ancient Greek medicine is the physician Hippocrates, known as the "Father of Modern Medicine", who established his own medical school at Cos.[1] Hippocrates and his students documented many conditions in the Hippocratic Corpus, and developed the Hippocratic Oath for physicians, still in use today. The writings of Hippocrates, and others, like Socrates, had a lasting influence on Islamic medicine and Medieval European medicine until many of their findings eventually became obsolete from the 14th century onwards.

Early influences The first known Greek medical school opened in Cnidus in 700 BC. Alcmaeon, author of the first anatomical work, worked at this school, and it was here that the practice of observing patients was established. Despite their known respect for Egyptian medicine, attempts to discern any particular influence on Greek practice at this early time have not been dramatically successful because of the lack of sources and the challenge of understanding ancient medical terminology. It is clear, however, that the Greeks imported Egyptian substances into their pharmacopoeia, and the influence became more pronounced after the establishment of a school of Greek medicine in Alexandria.[2]

Hippocrates and Hippocratic medicine


A towering figure in the history of medicine was the physician Hippocrates of Kos (ca. 460 BC – ca. 370 BC), considered the "father of modern medicine."[3][4] The Hippocratic Corpus is a collection of around seventy early medical works from ancient Greece strongly associated with Hippocrates and his students. Most famously, Hippocrates invented the Hippocratic Oath for physicians, which is still relevant and in use today.

The existence of the Hippocratic Oath implies that this "Hippocratic" medicine was practiced by a group of professional physicians bound (at least among themselves) by a strict ethical code. Aspiring students normally paid a fee for training (a provision is made for exceptions) and entered into a virtual family relationship with his teacher. This training included some oral instruction and probably hands-on experience as the teacher's assistant, since the Oath assumes that the student will be interacting with patients. The Oath also places limits on what the physician may or may not do ("To please no one will I prescribe a deadly drug") and intriguingly hints at the existence of another class of professional specialists, perhaps akin to surgeons ("I will leave this operation to be performed by practitioners, specialists in this art").[5]

Hippocrates and his followers were first to describe many diseases and medical conditions. He is given credit for the first purple description of clubbing of the fingers, an important diagnostic sign in chronic suppurative lung disease, lung cancer and cyanotic heart disease. For this reason, clubbed fingers are sometimes referred to as "Hippocratic fingers".[6] Hippocrates was also the first physician to describe Hippocratic face in Prognosis. Shakespeare famously alludes to this description when writing of Falstaff's death in Act II, Scene iii. of Henry V.[7][8]


Hippocrates began to categorize illnesses as acute, chronic, endemic and epidemic, and use terms such as, "exacerbation, relapse, resolution, crisis, paroxysm, peak, and convalescence."[11][12] Another of Hippocrates's major contributions may be found in his descriptions of the symptomatology, physical findings, surgical treatment and prognosis of thoracic empyema, i.e. suppuration of the lining of the chest cavity and hair loss and baldness. His teachings remain relevant to present-day students of pulmonary medicine and surgery.[13] Hippocrates was the first documented chest surgeon and his findings are still valid.[13] The Hippocratic Corpus contains the core medical texts of this school. Although once thought to have been written by Hippocrates himself, today, many scholars believe that these texts were written by a series of authors over several decades.[14] Since it is impossible to determine which may have been written by Hippocrates himself, it is difficult to know which Hippocratic doctrines originated with him.

Asclepieia

Temples dedicated to the healer-god Asclepius, known as Asclepieia (Greek: Ασκληπιεία, sing. Asclepieion Ασκληπιείον), functioned as centers of medical advice, prognosis, and healing.[15] At these shrines, patients would enter a dream-like state of induced sleep known as "enkoimesis" (Greek: ενκοίμησις) not unlike anesthesia, in which they either received guidance from the deity in a dream or were cured by surgery.[16] Asclepeia provided carefully controlled spaces conducive to healing and fulfilled several of the requirements of institutions created for healing.[15] In the Asclepieion of Epidaurus, three large marble boards dated to 350 BC preserve the names, case histories, complaints, and cures of about 70 patients who came to the temple with a problem and shed it there. Some of the surgical cures listed, such as the opening of an abdominal abscess or the removal of traumatic foreign material, are realistic enough to have taken place, but with the patient in a state of enkoimesis induced with the help of soporific substances such as opium.[16]

Aristotle

Ancient Greek philosopher Aristotle was the most influential scholar of the living world from antiquity. Though his early natural philosophy work was speculative, Aristotle's later biological writings demonstrate great concern for empiricism, biological causation, and the diversity of life.[17] Aristotle did not experiment, however, holding that items display their real natures in their own environments, rather than controlled artificial ones. While in modern-day physics and chemistry this assumption has been found unhelpful, in zoology and ethology it remains the dominant practice, and Aristotle's work "retains real interest".[18] He made countless observations of nature, especially the habits and attributes of plants and animals in the world around him, which he devoted considerable attention to categorizing. In all, Aristotle classified 540 animal species, and dissected at least 50.

Aristotle believed that formal causes guided all natural processes.[19] Such a teleological view gave Aristotle cause to justify his observed data as an expression of formal design; for example suggesting that Nature, giving no animal both horns and tusks, was staving off vanity, and generally giving creatures faculties only to such a degree as they are necessary. In a similar fashion, Aristotle believed that creatures were arranged in a graded scale of perfection rising from plants on up to man—the scala naturae or Great Chain of Being.[20]

He held that the level of a creature's perfection was reflected in its form, but not foreordained by that form. Yet another aspect of his biology divided souls into three groups: a vegetative soul, responsible for reproduction and growth; a sensitive soul, responsible for mobility and sensation; and a rational soul, capable of thought and reflection. He attributed only the first to plants, the first two to animals, and all three to humans.[21] Aristotle, in contrast to earlier philosophers, and like the Egyptians, placed the rational soul in the heart, rather than the brain.[22] Notable is Aristotle's division of sensation and thought, which generally went against previous philosophers, with the exception of Alcmaeon.[23] Aristotle's successor at the Lyceum, Theophrastus, wrote a series of books on botany—the History of Plants—which survived as the most important contribution of antiquity to botany, even into the Middle Ages. Many of Theophrastus' names survive into modern times, such as carpos for fruit, and pericarpion for seed vessel. Rather than focus on formal causes, as Aristotle did, Theophrastus suggested a mechanistic scheme, drawing analogies between natural and artificial processes, and relying on Aristotle's concept of the efficient cause. Theophrastus also recognized the role of sex in the reproduction of some higher plants, though this last discovery was lost in later ages.[24] The biological/teleological ideas of Aristotle and Theophrastus, as well as their emphasis on a series of axioms rather than on empirical observation, cannot be easily separated from their consequent impact on Western medicine.

Alexandria

Following Theophrastus ( d.286 BC ), the Lyceum failed to produce any original work. Though interest in Aristotle's ideas survived, they were generally taken unquestioningly.[25] It is not until the age of Alexandria under the Ptolemies that advances in biology can be again found. The first medical teacher at Alexandria was Herophilus of Chalcedon, who differed from Aristotle, placing intelligence in the brain, and connected the nervous system to motion and sensation. Herophilus also distinguished between veins and arteries, noting that the latter pulse while the former do not. He did this using an experiment involving cutting certain veins and arteries in a pig's neck until the squealing stopped.[26] In the same vein (no pun intended), he developed a diagnostic technique which relied upon distinguishing different types of pulse.[27] He, and his contemporary, Erasistratus of Chios, researched the role of veins and nerves, mapping their courses across the body.

Erasistratus connected the increased complexity of the surface of the human brain compared to other animals to its superior intelligence. He sometimes employed experiments to further his research, at one time repeatedly weighing a caged bird and noting its weight loss between feeding times. Following his teacher's researches into pneumatics, he claimed that the human system of blood vessels was controlled by vacuums, drawing blood across the body. In Erasistratus' physiology, air enters the body, is then drawn by the lungs into the heart, where it is transformed into vital spirit, and is then pumped by the arteries throughout the body. Some of this vital spirit reaches the brain, where it is transformed into animal spirit, which is then distributed by the nerves.[28] Herophilus and Erasistratus performed their experiments upon criminals given to them by their Ptolemaic kings. They dissected these criminals alive, and "while they were still breathing they observed parts which nature had formerly concealed, and examined their position, colour, shape, size, arrangement, hardness, softness, smoothness, connection."[29]

Though a few ancient atomists such as Lucretius challenged the teleological viewpoint of Aristotelian ideas about life, teleology (and after the rise of Christianity, natural theology) would remain central to biological thought essentially until the 18th and 19th centuries. In the words of Ernst Mayr, "Nothing of any real consequence in biology after Lucretius and Galen until the Renaissance."[30] Aristotle's ideas of natural history and medicine survived, but they were generally taken unquestioningly.[31]

Dioscorides

The first century AD Greek physician, pharmacologist, botanist, and Roman army surgeon Pedanius Dioscorides authored an encyclopedia of medicinal substances commonly known as De Materia Medica. This work did not delve into medical theory or explanation of pathogenesis, but described the uses and actions of some 600 substances, based on empirical observation. Unlike other works of Classical antiquity, Dioscorides' manuscript was never out of publication and his materia medica formed the basis for the Western pharmacopeia through the 19th century, a true testament to the efficacy of the medicines described ; moreover, the influence of work on European herbal medicine eclipsed that of the Hippocratic Corpus.[32]

Historical legacy

Through long contact with Greek culture, and their eventual conquest of Greece, the Romans absorbed many of the Greek ideas on medicine. Early Roman reactions to Greek medicine ranged from enthusiasm to hostility, but eventually the Romans adopted a favorable view of Hippocratic medicine.[33]

This acceptance led to the spread of Greek medical theories throughout the Roman Empire, and thus a large portion of the West. The most influential Roman scholar to continue and expand on the Hippocratic tradition was Galen (d. c. 207). Study of Hippocratic and Galenic texts, however, all but disappeared in the Latin West in the Early Middle Ages, following the collapse of the Western Empire, although the Hippocratic-Galenic tradition of Greek medicine continued to be studied and practiced in the Eastern Roman Empire (Byzantium). After AD 750, Arab, Persian and Andalusi scholars translated Galen's and Dioscorides' works in particular translated. Thereafter the Hippocratic-Galenic medical tradition was assimilated and eventually expanded, with the most influential Muslim doctor-scholar being (Ibn Sina). Beginning in the late eleventh century, the Hippocratic-Galenic tradition returned to the Latin West with a series of translations of the Classical texts, mainly from Arabic translations but occasionally from the original Greek. In the Renaissance, more translations of Galen and Hippocrates directly from the Greek were made from newly available Byzantine manuscripts.

Galen's influence was so great that even after Western Europeans started making dissections in the thirteenth century, scholars often assimilated findings into the Galenic model that otherwise might have thrown Galen's accuracy into doubt. Over time, however, Classical medical theory came to be superseded by increasing emphasis on scientific experimental methods in the 16th and 17th centuries. Nevertheless, the Hippocratic-Galenic practice of bloodletting was practiced into the 19th century, despite its empirical ineffectiveness and riskiness.

See also

References

Further reading

  • Annas, Julia Classical Greek Philosophy. In Boardman, John; Griffin, Jasper; Murray, Oswyn (ed.) The Oxford History of the Classical World. Oxford University Press: New York, 1986. ISBN 0-19-872112-9
  • Barnes, Jonathan Hellenistic Philosophy and Science. In Boardman, John; Griffin, Jasper; Murray, Oswyn (ed.) The Oxford History of the Classical World. Oxford University Press: New York, 1986. ISBN 0-19-872112-9
  • Cohn-Haft, Louis The Public Physicians of Ancient Greece, Northampton, Massachusetts, 1956
  • Guthrie, W. K. C. A History of Greek Philosophy. Volume I: The earlier Presocratics and the Pythagoreans. Cambridge University Press: New York, 1962. ISBN 0-521-29420-7
  • Jones, W. H. S.  Philosophy and Medicine in Ancient Greece, Johns Hopkins Press, Baltimore, 1946
  • Longrigg, James Greek Rational Medicine: Philosophy and Medicine from Alcmæon to the Alexandrians, Routledge, 1993.
  • Lovejoy, Arthur O. The Great Chain of Being: A Study of the History of an Idea. Harvard University Press, 1936. Reprinted by Harper & Row, ISBN 0-674-36150-4, 2005 paperback: ISBN 0-674-36153-9.
  • Mason, Stephen F. A History of the Sciences. Collier Books: New York, 1956.
  • Mayr, Ernst. The Growth of Biological Thought: Diversity, Evolution, and Inheritance. The Belknap Press of Harvard University Press: Cambridge, Massachusetts, 1982. ISBN 0-674-36445-7
  • von Staden H. (ed. trans.) Herophilus: The Art of Medicine in Early Alexandria. Cambridge University Press, 1989 ISBN 0-521-23646-0, ISBN 978-0-521-23646-1

External links

  • Ancient Greek Medicine in medicinenet.com
  • Greek Medicine by the History of Medicine Division of the National Library of Medicine.
  • (French) (English) Medicine in Antiquity
  • greekmedicine.net
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.