World Library  
Flag as Inappropriate
Email this Article
 

Mirex

Mirex
Mirex
Ball-and-stick model
Identifiers
CAS number  YesY
PubChem
ChemSpider  N
EC number
KEGG  N
MeSH
ChEBI  N
Jmol-3D images Image 1
Properties
Molecular formula C10Cl12
Molar mass 545.54 g mol−1
Melting point 485 °C (905 °F; 758 K)
Except where noted otherwise, data are given for materials in their standard state (at 25 °C (77 °F), 100 kPa)
 N   YesY/N?)

Mirex is an insecticide and later banned because of its impact on the environment. This white crystalline odorless solid is a derivative of cyclopentadiene. It was popularized to control fire ants but by virtue of its chemical robustness and lipophilicity it was recognized as a bioaccumulative pollutant. Ironically, the spread of the red imported fire ant was actually encouraged by the use of Mirex, which also kills native ants that are highly competitive with the fire ants. The United States Environmental Protection Agency prohibited its use in 1976.[1]

Production and applications

Mirex was first synthesized in 1946,[2] but was not used in pesticide formulations until 1955. Mirex was produced by the dimerization of hexachlorocyclopentadiene in the presence of aluminium chloride.

Mirex is a stomach insecticide. The insecticidal use was focused on Southeastern United States to control the imported [3]

Degradation

Characteristic of chlorocarbons, mirex does not burn easily; combustion products are expected to include chlordecone ("Kepone"), a related insecticide that is also banned in most of the western world, but more readily degraded. Sunlight degrades mirex primarily to photomirex (8-monohydromirex) and later partly to 2,8-dihydromirex.[1][4][5]

Mirex is highly resistant to microbiological degradation. It only slowly dechlorinates to a monohydro derivative by anaerobic microbial action in sewage sludge and by enteric bacteria. Degradation by soil microorganisms has not been described.

Bioaccumulation and biomagnification

Mirex is highly cumulative and amount depends upon the concentration and duration of exposure. There is evidence of accumulation of mirex in aquatic and terrestrial food chains to harmful levels. After 6 applications of mirex bait at 1.4 kg/ha, high mirex levels were found in some species; turtle fat contained 24.8 mg mirex/kg, kingfishers, 1.9 mg/kg, coyote fat, 6 mg/kg, opossum fat, 9.5 mg/kg, and racoon fat, 73.9 mg/kg. In a model ecosystem with a terrestrial-aquatic interface, sorgum seedlings were treated with mirex at 1.1 kg/ha. Caterpillars fed on these seedlings and their faeces contaminated the water which contained algae, snails, Daphnia, mosquito larvae, and fish. After 33 days, the ecological magnification value was 219 for fish and 1165 for snails.

Although general environmental levels are low, it is widespread in the biotic and abiotic environment. Being lipophilic, Mirex is strongly adsorbed on sediments.

Safety

Mirex is only moderately toxic in single-dose animal studies (oral LD50 values range from 365–3000 mg/kg body weight).[6] It can enter the body via inhalation, ingestion, and via the skin. The most sensitive effects of repeated exposure in animals are principally associated with the liver, and these effects have been observed with doses as low as 1.0 mg/kg diet (0.05 mg/kg body weight per day), the lowest dose tested. At higher dose levels, it is fetotoxic (25 mg/kg in diet) and teratogenic (6.0 mg/kg per day). Mirex was not generally active in short-term tests for genetic activity. There is sufficient evidence of its carcinogenicity in mice and rats. Delayed onset of toxic effects and mortality is typical of mirex poisoning. Mirex is toxic for a range of aquatic organisms, with crustacea being particularly sensitive.

Mirex induces pervasive chronic physiological and biochemical disorders in various vertebrates. No acceptable daily intake (ADI) for Mirex has been advised by FAO/WHO. IARC (1979) evaluated mirex's carcinogenic hazard and concluded that "there is sufficient evidence for its carcinogenicity to mice and rats. In the absence of adequate data in humans, based on above result it can be said, that it has carcinogenic risk to humans”. Data on human health effects do not exist .

Health effects

Per a 1995 ATSDR report Mirex caused fatty changes in the livers, hyperexcitability and convulsion, and inhibition of reproduction in animals. It is a potent endocrine disruptor, interfering with estrogen-mediated functions such as ovulation, pregnancy, and endometrial growth. It also induced liver cancer by interaction with estrogen in female rodents.[7]

References

  1. ^ a b Robert L. Metcalf “Insect Control” in Ullmann’s Encyclopedia of Industrial Chemistry” Wiley-VCH, Wienheim, 2002. doi:10.1002/14356007.a14_263
  2. ^ H. J. Prins (1946). "Synthesis of Polychloro Combounds with Aluminium Chloride .XI.The Elimination of Hydrogen Chloride from Polychloro Combounds and the Formation of Cyclic Compounds -The Synthesis of Perchlorocyclopentadien". Rec. Trav. Chim. 65 (7-8): 455–467.  
  3. ^ Kaiser KLE, Pesticide Report: The rise and fall of Mirex. Environ. Sci. Technol. 1978, 12(5), 520-528. doi:10.1021/es60141a005
  4. ^ IPCS International Programme on Chemical Safety: Mirex – Health and Safety Guide No. 39, 1990.
  5. ^ Kelly L. Lambrych, John P. Hassett: Wavelength-dependent photoreactivity of mirex in Lake Ontario, Environ. Sci. Technol., 2006, 40(3), 858–863; doi:10.1021/es0511927.
  6. ^ EL-Bayomey AA, IW Somak, and S. Branch. Embryotoxicity of the pesticide Mirex In vitro. Teratogenesis, Carcinogenesis, and Mutagenesis 2002, 22:239-249.
  7. ^ Faroon O, Kueberuwa S, Smith L, DeRosa C. (1995). "ATSDR evaluation of health effects of chemicals. II. Mirex and chlordecone: health effects, toxicokinetics, human exposure, and environmental fate". Toxicol Ind Health. 11 (6): 1-203. 

See Also

  • Pesticide Properties Database (PPDB) record for Mirex
  • International Organization for the Management of Chemicals (IOMC), 1995, POPs Assessment Report, December.1995.
  • Lambrych KL, and JP Hassett. Wavelength-Dependent Photoreactivity of Mirex in Lake Ontario. Environ. Sci. Technol. 2006, 40, 858-863
  • Mirex Health and Safety Guide. IPCS International Program on Chemical Safety. Health and Safety Guide No.39. 1990
  • Toxicological Review of Mirex. In support of summary information on the Integrated Risk Information System (IRIS) 2003. U.S. Environmental Protection Agency, Washington DC.
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.