#jsDisabledContent { display:none; } My Account | Register | Help

# Newman–Shanks–Williams prime

Article Id: WHEBN0000323705
Reproduction Date:

 Title: Newman–Shanks–Williams prime Author: World Heritage Encyclopedia Language: English Subject: Collection: Classes of Prime Numbers Publisher: World Heritage Encyclopedia Publication Date:

### Newman–Shanks–Williams prime

In mathematics, a Newman–Shanks–Williams prime (NSW prime) is a prime number p which can be written in the form

S_{2m+1}=\frac{\left(1 + \sqrt{2}\right)^{2m+1} + \left(1 - \sqrt{2}\right)^{2m+1}}{2}.

NSW primes were first described by Morris Newman, Daniel Shanks and Hugh C. Williams in 1981 during the study of finite simple groups with square order.

The first few NSW primes are 7, 41, 239, 9369319, 63018038201, … (sequence A088165 in OEIS), corresponding to the indices 3, 5, 7, 19, 29, … (sequence A005850 in OEIS).

The sequence S alluded to in the formula can be described by the following recurrence relation:

S_0=1 \,
S_1=1 \,