World Library  
Flag as Inappropriate
Email this Article

Non-linear filter

Article Id: WHEBN0017398535
Reproduction Date:

Title: Non-linear filter  
Author: World Heritage Encyclopedia
Language: English
Subject: Effects unit, Kalman filter, Voltage-controlled filter, Electronic filter, Radar tracker
Collection:
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Non-linear filter

In signal processing, a nonlinear (or non-linear) filter is a filter whose output is not a linear function of its input. That is, if the filter outputs signals R and S for two input signals r and s separately, but does not always output αR + βS when the input is a linear combination αr + βs.

Both continuous-domain and discrete-domain filters may be nonlinear. A simple example of the former would be an electrical device whose output voltage R(t) at any moment is the square of the input voltage r(t); or which is the input clipped to a fixed range [a,b], namely R(t) = max(a, min(b, r(t))). An important example of the latter is the running-median filter, such that every output sample Ri is the median of the last three input samples ri, ri−1, ri−2. Like linear filters, nonlinear filters may be shift invariant or not.

Non-linear filters have many applications, especially in the removal of certain types of noise that are not additive. For example, the median filter is widely used to remove spike noise — that affects only a small percentage of the samples, possibly by very large amounts. Indeed all radio receivers use non-linear filters to convert kilo- to gigahertz signals to the audio frequency range; and all digital signal processing depends on non-linear filters (analog-to-digital converters) to transform analog signals to binary numbers.

However, nonlinear filters are considerably harder to use and design than linear ones, because the most powerful mathematical tools of signal analysis (such as the impulse response and the frequency response) cannot be used on them. Thus, for example, linear filters are often used to remove noise and distortion that was created by nonlinear processes, simply because the proper non-linear filter would be too hard to design and construct.

Applications

Noise removal Signals often get corrupted during transmission or processing; and a frequent goal in filter design is the restoration of the original signal, a process commonly called "noise removal". The simplest type of corruption is additive noise, when the desired signal S gets added with an unwanted signal N that has no known connection with S. If the noise N has a simple statistical description, such as Gaussian noise, then a Kalman filter will reduce N and restore S to the extent allowed by Shannon's theorem. In particular, if S and N do not overlap in the frequency domain, they can be completely separated by linear bandpass filters.

For almost any other form of noise, on the other hand, some sort of non-linear filter will be needed for maximum signal recovery. For multiplicative noise (that gets multiplied by the signal, instead of added to it), for example, it may suffice to convert the input to a logarithmic scale, apply a linear filter, and then convert the result to linear scale. In this example, the first and third steps are not linear.

Non-linear filters may also be useful when certain "nonlinear" features of the signal are more important than the overall information contents. In digital image processing, for example, one may wish to preserve the sharpness of silhouette edges of objects in photographs, or the connectivity of lines in scanned drawings. A linear noise-removal filter will usually blur those features; a non-linear filter may give more satisfactory results(even if the blurry image may be more "correct" in the information-theoretic sense).

Many nonlinear noise-removal filters operate in the time domain.They typically examine the input digital signal within a finite window surrounding each sample, and use some statistical inference model (implicitly or explicitly) to estimate the most likely value for the original signal at that point. The design of such filters is known as the fitering problem for a stochastic process in estimation theory and control theory.

Examples of nonlinear filters include:

Kushner–Stratonovich filtering

The problem of optimal nonlinear filtering was solved in the late 1950s and early 1960s by Ruslan L. Stratonovich[1][2][3][4] and Harold J. Kushner.[5]

The Kushner–Stratonovich solution is a stochastic partial differential equation. In 1969, Moshe Zakai introduced a simplified dynamics for the unnormalized conditional law of the filter known as Zakai equation.[6] It has been proved by Mireille Chaleyat-Maurel and Dominique Michel[7] that the solution is infinite dimensional in general, and as such requires finite dimensional approximations. These may be heuristics-based such as the extended Kalman filter or the assumed density filters described by Peter S. Maybeck [8] or the projection filters introduced by Damiano Brigo, Bernard Hanzon and François Le Gland,[9] some sub-families of which are shown to coincide with the assumed density filters.[10]

Energy transfer filters

Energy transfer filters are a class of nonlinear dynamic filters that can be used to move energy in a designed manner.[11] Energy can be moved to higher or lower frequency bands, spread over a designed range, or focused. Many energy transfer filter designs are possible, and these provide extra degrees of freedom in filter design that are just not possible using linear designs.

See also

References

Further reading

External links

  • Prof. Ilya Shmulevich page on nonlinear signal processing
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.