World Library  
Flag as Inappropriate
Email this Article


Article Id: WHEBN0007930039
Reproduction Date:

Title: Opiorphin  
Author: World Heritage Encyclopedia
Language: English
Subject: Opioid peptide, List of opioids, Neoendorphin, Galanin-like peptide, Opioid peptides
Publisher: World Heritage Encyclopedia


IUPAC name
(2S,5S,8S,11S,14S)-14,17-diamino-8-benzyl-2,11-bis(3-guanidinopropyl)-5-(hydroxymethyl)-4,7,10,13,17-pentaoxo-3,6,9,12-tetraazaheptadecan-1-oic acid
Other names
Gln-Arg-Phe-Ser-Arg; L-Glutaminyl-L-arginyl-L-phenylalanyl-L-seryl-L-arginine
ChemSpider  N
Jmol-3D images Image
Molar mass 692.78 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
 N  (: Y/N?)

Opiorphin is an endogenous chemical compound first isolated from human saliva. Initial research with mice shows the compound has a painkilling effect greater than that of morphine.[2] It works by stopping the normal breakup of enkephalins, natural pain-killing opioids in the spinal cord. It is a relatively simple molecule consisting of a five-amino acid polypeptide, Gln-Arg-Phe-Ser-Arg.[3][4][5][6][7][8][9][10]

Opiorphin pentapeptide originates from the N-terminal region of the protein PROL1 (proline-rich, lacrimal 1).[3] Opiorphin inhibits three proteases: neutral ecto-endopeptidase (MME), ecto-aminopeptidase N (ANPEP)[3] and perhaps also a dipeptidyl peptidase DPP3.[8] Such action extends the duration of enkephalin effect where the natural pain killers are released physiologically in response to specific potentially painful stimuli, in contrast with administration of narcotics, which floods the entire body and causes many undesirable adverse reactions, including addiction liability and constipation.[11][12] In addition, opiorphin may exert anti-depressive action.[13][14]

Therapeutic application of opiorphin in humans would require modifying the molecule to avoid its rapid degradation in the intestine and its poor penetration of the blood–brain barrier.[11][12]

See also


  1. ^ Opiorphin at Sigma-Aldrich
  2. ^ Rougeot C, Robert F, Menz L, Bisson JF, Messaoudi M (August 2010). "Systemically active human opiorphin is a potent yet non-addictive analgesic without drug tolerance effects". J. Physiol. Pharmacol. 61 (4): 483–90.  
  3. ^ a b c Dickinson DP, Thiesse M (April 1996). "cDNA cloning of an abundant human lacrimal gland mRNA encoding a novel tear protein". Curr. Eye Res. 15 (4): 377–86.  
  4. ^ Andy Coghlan (November 13, 2006). "Natural-born painkiller found in human saliva".  
  5. ^ "'"Natural chemical 'beats morphine.  
  6. ^ Mary Beckman (November 13, 2006). "Prolonging Painkillers".  
  7. ^ Stanović S, Boranić M, Petrovecki M, et al. (2000). "Thiorphan, an inhibitor of neutral endopeptidase/enkephalinase (CD10/CALLA) enhances cell proliferation in bone marrow cultures of patients with acute leukemia in remission". Haematologia (Budap) 30 (1): 1–10.  
  8. ^ a b Thanawala V, Kadam VJ, Ghosh R (October 2008). "Enkephalinase inhibitors: potential agents for the management of pain". Curr Drug Targets 9 (10): 887–94.  
  9. ^ Davies KP (March 2009). "The role of opiorphins (endogenous neutral endopeptidase inhibitors) in urogenital smooth muscle biology". J Sex Med. 6 Suppl 3: 286–91.  
  10. ^ Tian XZ, Chen J, Xiong W, He T, Chen Q (July 2009). "Effects and underlying mechanisms of human opiorphin on colonic motility and nociception in mice". Peptides 30 (7): 1348–54.  
  11. ^ a b Rougeot C, Robert F, Menz L, Bisson JF, Messaoudi M (August 2010). "Systemically active human opiorphin is a potent yet non-addictive analgesic without drug tolerance effects" (PDF). J. Physiol. Pharmacol. 61 (4): 483–90.  
  12. ^ a b Popik P, Kamysz E, Kreczko J, Wróbel M (November 2010). "Human opiorphin: the lack of physiological dependence, tolerance to antinociceptive effects and abuse liability in laboratory mice". Behav. Brain Res. 213 (1): 88–93.  
  13. ^ Javelot H, Messaoudi M, Garnier S, Rougeot C (June 2010). "Human opiorphin is a naturally occurring antidepressant acting selectively on enkephalin-dependent delta-opioid pathways" (PDF). J. Physiol. Pharmacol. 61 (3): 355–62.  
  14. ^ Yang QZ, Lu SS, Tian XZ, Yang AM, Ge WW, Chen Q (February 2011). "The antidepressant-like effect of human opiorphin via opioid-dependent pathways in mice". Neurosci. Lett. 489 (2): 131–5.  

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.