World Library  
Flag as Inappropriate
Email this Article

Orders of magnitude (angular velocity)

Article Id: WHEBN0005751037
Reproduction Date:

Title: Orders of magnitude (angular velocity)  
Author: World Heritage Encyclopedia
Language: English
Subject: Orders of magnitude, Orders of magnitude sidebar, Orders of magnitude (illuminance), Orders of magnitude (resistance), Angular frequency
Collection: Orders of Magnitude
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Orders of magnitude (angular velocity)

This page is a progressive and labeled list of the SI angular velocity orders of magnitude, with certain examples appended to some list objects.

List of orders of magnitude for angular velocity
Factor (rad·s−1) Value (rad·s−1) Value (prefixHz) Value (rpm) Item
10−16 7.96×10−16–8.85×10−16 127 aHz 7.61×10−15–8.45×10−15 Galactic period of the Sun[1]
10−12 7.73×10−12 1.23 pHz 2.05×10−14 Rate of Earth's axial precession and corresponding precession of the equinoxes.[2]
10−11 1.65×10−11 2.63 pHz 1.58×10−10 Sedna's average sidereal orbit rate
10−10 8.03×1010 127 pHz 7.66×109 Sidereal orbit rate of Pluto
10−9 1.21×10−9 192 pHz 1.15×10−8 Sidereal orbit rate of Neptune
10−8 1.68×10−8 2.2 nHz 1.6×10−7 Sidereal orbit rate of Jupiter
10−7 1.06×10−7 16 nHz 1×10−6 Sidereal orbit rate of Mars
1.99×10−7 31.7 nHz 1.90×10−6 Sidereal orbit rate of the Earth around the Sun
10−6 2.66×10−6 424 nHz 2.54×10−5 Moon's sidereal orbit rate around the Earth
10−5 7.27×10−5 11.6 µHz 6.94×10−4 Earth's sidereal rotation rate
10−4 1.45×10−4 23.1 µHz 1.39×10−3 Hour hand on an analog clock
1.75×10−4 28 µHz 1.68×10−3 Jupiter's sidereal rotation rate
10−3 1.75×103 278 µHz 0.0167 Minute hand on an analog clock
3.5×10−3 560 µHz 0.033 The London Eye giant Ferris wheel
10−2  
10−1 1.05×10−1 16.7 mHz 1 Second hand on an analog clock
100 3.49×100 556 mHz 33⅓ LP record
6×100–1.3×101 1–2 Hz 60–120 Low-speed diesel engines (used in ships)
101 1×101–3×101 2–5 Hz 100–300 Early diesel engines
2×101–5×101 3–8 Hz 200–500 Audio compact disc
4.7×101 7.5 Hz 450 Rotor blades of a helicopter in flight
9.4×101 15 Hz 900 Spin cycle of a typical washing machine
102 1.0×102 16 Hz 960 The wheels of a typical automobile driving at 112 kilometres per hour (70 mph)
1.0×102–1.2×102 17–18 Hz 1000–1100 Barrel assembly of M61 Vulcan cannon
1.3×102 20 Hz 1200 High-speed diesel engines (lorries, yachts, generators, etc.)
2×102 30 Hz 2000 Engine speed of typical automobile traveling at 100 kilometres per hour (60 mph)
3.14×102 50 Hz 3000 Turbo generator in an electrical power plant for a 50 Hz grid
5.8×102–7.3×102 92–120 Hz 5500–7000 Redline of typical automobile engine
7.54×102 120 Hz 7200 Consumer hard disk
103 1.01×103 161 Hz 9650 Pulsar PSR B1257+12
1.08×103 173 Hz 10,400 CD in 52× CD-ROM drive[3]
1.6×103 270 Hz 16,200 Flagellar motor top speed under light load[4]
2×103 300 Hz 18,000 Redline of a V8 Formula 1 race car (pre-2014)
4.50×103 716 Hz 43,000 Pulsar PSR J1748-2446ad (fastest known)[5]
9.42×103 1500 Hz 90 000 Zippe centrifuge
104 1.4×104 2.2 kHz 130,000 Analytical ultracentrifuge[6]
1.6×104 2.5 kHz 150,000 Turbocharger
8×104 10 kHz 800,000 Ultrasonic dental drill
105 order of 2×105 order of 30 kHz order of 2,000,000 Microfabricated gas turbine[7]
107 6.28 x 107 10 MHz 600,000,000 Man-made rotational speed record: a calcium carbonate sphere, only four millionths of a metre in diameter, levitated using a laser in a vacuum chamber and spun up to speed using circularly polarized light.[8]
1044 1.16545×1044 1.85×1043Hz 1.1×1045 Planck angular frequency

See also

References

  1. ^ see Sun
  2. ^ "Precession of the Equinox". Wwu.edu. Retrieved 2015-04-13. 
  3. ^ "Hi Fi Writer – Killer CDs?". 2003. Retrieved 2007-12-13. 
  4. ^ "The speed of the flagellar rotary motor of Escherichia coli varies linearly with protonmotive force". 2003-06-04. Retrieved 2013-08-28. 
  5. ^ Hessels, JWT; Ransom, S. M.; Stairs, Ingrid H.; Freire, Paulo C. C.; Kaspi, Victoria M.; Camilo, Fernando (2006-01-16). "A Radio Pulsar Spinning at 716 Hz". Science 311 (5769): 1901–4.  
  6. ^ "Beckman Coulter ultracentrifuge product info page". BeckmanCoulter.com. Retrieved 2006-07-23. 
  7. ^ Liu, L.X.; Teo, C.J.; Epstein, A.H.; Spakovszky, Z.S. (2005). "Hydrostatic Gas Journal Bearings for Micro-Turbomachinery". Journal of Vibration and Acoustics 127 (2): 157–164.  
  8. ^ Yoshihiko Arita; Michael Mazilu; Kishan Dholakia (28 Aug 2013). "Laser-induced rotation and cooling of a trapped microgyroscope in vacuum". Nature Communications 4: 2374.  
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.