#jsDisabledContent { display:none; } My Account | Register | Help

Particle number

Article Id: WHEBN0000582770
Reproduction Date:

 Title: Particle number Author: World Heritage Encyclopedia Language: English Subject: Collection: Publisher: World Heritage Encyclopedia Publication Date:

Particle number

The particle number (or number of particles) of a thermodynamic system, popconventionally indicated with the letter N, is the number of constituent particles in that system.[1] The particle number is a fundamental parameter in thermodynamics which is conjugate to the chemical potential. Unlike most physical quantities, particle number is a dimensionless quantity. It is an extensive parameter, as it is directly proportional to the size of the system under consideration, and thus meaningful only for closed systems.

A constituent particle is one that cannot be broken into smaller pieces at the scale of energy k·T involved in the process (where k is the Boltzmann constant and T is the temperature). For example, for a thermodynamic system consisting of a piston containing water vapour, the particle number is the number of water molecules in the system. The meaning of constituent particle, and thereby of particle number, is thus temperature-dependent.

Determining the particle number

The concept of particle number has a main role in theoretical considerations. In situations where the actual particle number of a given thermodynamical system needs to be determined, mainly in chemistry, it is not practically possible to measure it directly by counting the particles. If the material is homogeneous and has a known amount of substance n expressed in moles, the particle number N can be found by the relation

N = nNA,

where NA is the Avogadro constant.[1]

Particle number density

A related intensive system parameter is given by the particle number density, obtained by dividing the particle number of a system by its volume. This parameter is often denoted by a lower-case letter n.

In quantum mechanics

In quantum mechanical processes the total number of particles may not be preserved. The concept is therefore generalized to the particle number operator, that is, the observable that counts the number of constituent particles.[2] In quantum field theory, the particle number operator (see Fock state) is conjugate to the phase of the classical wave (see coherent state).

In air quality

One measure of air pollution used in air quality standards is the atmospheric concentration of particulate matter. This measure is also sometimes referred to as the "particle number", although it is usually expressed in μg/m3 (micrograms per cubic metre).

References

1. ^ a b
2. ^
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.

Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.