World Library  
Flag as Inappropriate
Email this Article

Star network

Article Id: WHEBN0000028244
Reproduction Date:

Title: Star network  
Author: World Heritage Encyclopedia
Language: English
Subject: Network topology, Local area network, Starnet, One-Net, Polling (computer science)
Collection:
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Star network

Star network layout
Star topology

Star networks are one of the most common computer network topologies. In its simplest form, a star network consists of one central switch, hub or computer, which acts as a conduit to transmit messages. This consists of a central node, to which all other nodes are connected; this central node provides a common connection point for all nodes through a hub. In star topology, every node (computer workstation or any other peripheral) is connected to a central node called a hub or switch. The switch is the server and the peripherals are the clients.[1] Thus, the hub and leaf nodes, and the transmission lines between them, form a graph with the topology of a star. If the central node is passive, the originating node must be able to tolerate the reception of an echo of its own transmission, delayed by the two-way transmission time (i.e. to and from the central node) plus any delay generated in the central node. An active star network has an active central node that usually has the means to prevent echo-related problems.

The star topology reduces the damage caused by line failure by connecting all of the systems to a central node. When applied to a bus-based network, this central hub rebroadcasts all transmissions received from any peripheral node to all peripheral nodes on the network, sometimes including the originating node. All peripheral nodes may thus communicate with all others by transmitting to, and receiving from, the central node only. The failure of a transmission line linking any peripheral node to the central node will result in the isolation of that peripheral node from all others, but the rest of the systems will be unaffected.[2]

It is also designed with each node (file servers, workstations, and peripherals) connected directly to a central network hub, switch, or concentrator.

Data on a star network passes through the hub, switch, or concentrator before continuing to its destination. The hub, switch, or concentrator manages and controls all functions of the network. It also acts as a repeater for the data flow. This configuration is common with twisted pair cable. However, it can also be used with coaxial cable or optical fibre cable.

Advantages and disadvantages

Advantages

  • Better performance: Star topology prevents the passing of data packets through an excessive number of nodes. At most, 3 devices and 2 links are involved in any communication between any two devices. Although this topology places a huge overhead on the central hub, with adequate capacity, the hub very high utilization by one device without affecting others.
  • Isolation of devices: Each device is inherently isolated by the link that connects it to the hub. This makes the isolation of individual devices straightforward and amounts to disconnecting each device from the others. This isolation also prevents any non-centralized failure from affecting the network.
  • Benefits from centralization: As the central hub is the bottleneck, increasing its capacity, or connecting additional devices to it, increases the size of the network very easily. Centralization also allows the inspection of traffic through the network. This facilitates analysis of the traffic and detection of suspicious behavior.
  • Easy to detect faults and to remove parts.
  • No disruptions to the network when connecting or removing devices.
  • Installation and configuration is easy since every one device only requires a link and one input/output port to connect it to any other device(s).

Disadvantages

  • Reliance on central device: star topology relies on the central device (the switch, hub or computer) and if this device fails the whole network will fail in turn.
  • Higher costs: the need for a central device increases costs compared to the bus and ring topologies. The star topology also requires more cable when using Ethernet cables than ring and bus topologies.
  • Limited capacity for nodes: as this type of network needs all connections to go through a central device the amount of nodes in a network is limited by this factor whereas bus and ring topologies are not limited in such a way.

References

  1. ^ Roberts, Lawrence G.; Wessler, Barry D. (1970), "Computer network development to achieve resource sharing", AFIPS '70 (Spring): Proceedings of the May 5–7, 1970, spring joint computer conference, New York, NY, USA: ACM, pp. 543–549,  
  2. ^ "What is star network? - Definition from WhatIs.com". Searchnetworking.techtarget.com. Retrieved 2014-06-24. 
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.