World Library  
Flag as Inappropriate
Email this Article

Stretch reflex

Article Id: WHEBN0004446294
Reproduction Date:

Title: Stretch reflex  
Author: World Heritage Encyclopedia
Language: English
Subject: Running, Thyrotoxic periodic paralysis, Primitive reflexes, Osteopathic manipulative medicine, Serotonin syndrome
Collection:
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Stretch reflex

The stretch reflex (myotatic reflex) is a muscle contraction in response to stretching within the muscle. It is a monosynaptic reflex which provides automatic regulation of skeletal muscle length.

When a muscle lengthens, the muscle spindle is stretched and its nerve activity increases. This increases alpha motor neuron activity, causing the muscle fibers to contract and thus resist the stretching. A secondary set of neurons also causes the opposing muscle to relax. The reflex functions to maintain the muscle at a constant length.

Gamma motoneurons regulate how sensitive the stretch reflex is by tightening or relaxing the fibers within the spindle. There are several theories as to what may trigger gamma motoneurons to increase the reflex's sensitivity. For example, alpha-gamma co-activation might keep the spindles taut when a muscle is contracted, preserving stretch reflex sensitivity even as the muscle fibers become shorter. Otherwise the spindles would become slack and the reflex would cease to function.

This reflex has the shortest latency of all spinal reflexes including the Golgi tendon reflex and reflexes mediated by pain and cutaneous receptors.

Examples

A person standing upright begins to lean to one side. The postural muscles that are closely connected to the vertebral column on the side will stretch. Because of this, stretch receptors in those muscles contract to correct posture.

Other examples (followed by involved spinal nerves) are responses to stretch created by a blow upon a muscle tendon:

Another example is the group of fibers in the calf muscle, which synapse with motor neurons supplying muscle fibers in the same muscle. A sudden stretch, such as tapping the Achilles' tendon, causes a reflex contraction in the muscle as the spindles sense the stretch and send an action potential to the motor neurons which then cause the muscle to contract; this particular reflex causes a contraction in the soleus-gastrocnemius group of muscles. Like the patellar reflex, this reflex can be enhanced by the Jendrassik maneuver.

There are basically four types of muscle fibers. This includes the slow twitch (ST) fibers, which are slow contracting and slow to fatigue. The fast twitch muscle fibers are sub-divided into several sub-classes and include fibers that are fast contracting and resistant to fatigue (FRF), fast contracting but more easily fatigued (FEF), and fast contracting fast fatiguing white fibers (FFF). [1]

Supraspinal control

The central nervous system can influence the stretch reflex via the gamma motoneurons, which as described above control the sensitivity of the reflex.

Inhibitory signals arrive at gamma neurons through the lateral reticulospinal tract from Brodmann area 6, the paleocerebellum and the red nucleus. Facilitatory signals arrive through the ventral reticulospinal tract from Brodmann area 4, the neocerebellum and the vestibular nucleus.

Spinal control

Pathology

Grading of stretch reflexes upon tapping muscle tendon[2]
Grade Response Significance
0 no response always abnormal
1+ slight but definitely present response may or may not be normal
2+ brisk response normal
3+ very brisk response may or may not be normal
4+ clonus always abnormal

The clasp-knife response is a stretch reflex with a rapid decrease in resistance when attempting to flex a joint. It is one of the characteristic responses of an upper motor neuron lesion.

See also

References

  1. ^ Dr. Michael Yessis (2000). Explosive Running. McGraw-Hill Companies, Inc.; 1st edition.  
  2. ^ Walker, H. K.; Walker, H. K.; Hall, W. D.; Hurst, J. W. (1990). "Deep Tendon Reflexes".   [1]

External links


This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.