Wind towers


A windcatcher (Persian: بادگیرbâdgir: bâd "wind" + gir "catcher", Arabic: ملقف malqaf in Egypt[1][2]) is a traditional Persian architectural element to create natural ventilation in buildings.[3] Windcatchers come in various designs: uni-directional, bi-directional, and multi-directional. Windcatchers remain present in many countries and can be found in traditional Persian-influenced architecture throughout the Middle East, including in Pakistan, Afghanistan[4] and the Persian Gulf states.

Background

Central Iran shows large diurnal temperature variation with an arid climate. Most buildings are constructed from thick ceramics with high insulation values. Towns centered on desert oases tend to be packed very closely together with high walls and ceilings, maximizing shade at ground level. The heat of direct sunlight is minimized with small windows that face away from the sun.[4]

The windcatcher's effectiveness had led to its routine use as a refrigerating device in Persian architecture. Many traditional water reservoirs (ab anbars) are built with windcatchers that are capable of storing water at near freezing temperatures during summer months. The evaporative cooling effect is strongest in the driest climates, such as on the Iranian plateau, leading to the ubiquitous use of windcatchers in drier areas such as Yazd, Kerman, Kashan, Sirjan, Nain, and Bam.

A small windcatcher is called a shish-khan in traditional Persian architecture. Shish-khans can still be seen on top of ab anbars in Qazvin and other northern cities in Iran. These seem to function more as ventilators than as the temperature regulators seen in the central deserts of Iran.

Windcatchers in Egypt



The windcatchers are known in traditional Egyptian architecture in Ancient Egypt as demonstrated in Windcatchers on the Pharonic house of Neb- Ammun, Egypt, 19th Dynasty, c.1300 BC, British Museum.[5] It was revived in Neoislamic architecture as the works of Hassan Fathy. In Egypt the windcatchers are known as "Malqaf".[2][6][7][8]

Structure and architecture

Windcatchers tend to have one, four, or eight openings. In the city of Yazd, all windcatchers are four- or eight-sided. The construction of a windcatcher depends on the direction of airflow at that specific location: if the wind tends to blow from only one side, it is built with only one downwind opening. This is the style most commonly seen in Meybod, 50 kilometers from Yazd: the windcatchers are short and have a single opening.

To keep buildings free of dust and sand blown in from the desert, windcatchers were built facing away from the wind.[9]

Function

The windcatcher can function in three ways: directing airflow downward using direct wind entry, directing airflow upwards using a wind-assisted temperature gradient, or directing airflow upwards using a solar-assisted temperature gradient.

Downward airflow due to direct wind entry

One of the most common uses of the windcatcher is to cool the inside of the dwelling; it is often used in combination with courtyards and domes as an overall ventilation and heat-management strategy. It is essentially a tall, capped tower with one face open at the top. This open side faces the prevailing wind, thus "catching" it, and brings it down the tower into the heart of the building to maintain air flow, thus cooling the building interior. It does not necessarily cool the air itself, but rather relies on the rate of airflow to provide a cooling effect. Windcatchers have been employed in this manner for thousands of years, as detailed by contemporary Egyptian architect Hassan Fathy.[10]


Upward airflow due to temperature gradient

Wind-assisted temperature gradient

Windcatchers are also used in combination with a qanat, or underground canal. In this method, the open side of the tower faces away from the direction of the prevailing wind (the tower's orientation can be adjusted by directional ports at the top). By keeping only this tower open, air is drawn upwards using the Coandă effect.

The pressure differential on one side of the building causes air to be drawn down into the passage on the other side. The hot air is brought down into the qanat tunnel and is cooled by coming into contact with the cool earth[Note 1] and cold water running through the qanat. The cooled air is drawn up through the windcatcher, again by the Coandă effect. On the whole, the cool air flows through the building, decreasing the structure's overall temperature. The effect is magnified by the water vapour from the qanat.

Solar-produced temperature gradient

In a windless environment or waterless house, a windcatcher functions as a solar chimney. It creates a pressure gradient which allows hot air, which is less dense, to travel upwards and escape out the top. This is also compounded significantly by the diurnal cycle, trapping cool air below. The temperature in such an environment cannot drop below the nightly low temperature.

When coupled with thick adobe that exhibits good resistance against heat transmission qualities, the windcatcher is able to chill lower-level spaces in mosques and houses (e.g. shabestans) in the middle of the day to frigid temperatures.

Directing airflow upwards using wind-assisted or solar-produced temperature gradients has gained some ground in Western architecture, and there are several commercial products using the name windcatcher.

Modern applications

The windcatcher approach has recently been utilized in Western architecture, such as in the visitor center at Zion National Park, Utah, where it functions without the addition of mechanical devices in order to regulate temperature.[11]

Using aluminum for the windcatcher provides a more efficient capturing system, allowing for wind capture from multiple directions. The Kensington Oval cricket ground in Barbados and the Saint-Étienne Métropole’s Zenith both use this method.[11]


Wind driven systems differ dramatically from stack systems and the use of ASA (Acrylonitrile Styrene Acrylate - Brand name Luran S) has overtaken traditional Glass Reinforced Plastic (GRP) materials. It is now possible to use systems that are better than the 99% rain rejection that was previously observed.

Gallery

See also

Sustainable development portal

Notes

References

External links

Template:Iranian Architecture

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.