World Library  
Flag as Inappropriate
Email this Article

Wuchereria bancrofti

Article Id: WHEBN0000390926
Reproduction Date:

Title: Wuchereria bancrofti  
Author: World Heritage Encyclopedia
Language: English
Subject: Lymphatic filariasis, Filariasis, Brugia malayi, Mosquito-malaria theory, Brugia timori
Collection: Insect-Borne Diseases, Parasites of Humans, Parasitic Nematodes, Spirurida, Tropical Diseases
Publisher: World Heritage Encyclopedia

Wuchereria bancrofti

Wuchereria bancrofti
Microfilar of W. bancrofti, from a patient seen in Haiti - the thick blood smears are stained with hematoxylin
Scientific classification
Kingdom: Animalia
Phylum: Nematoda
Class: Secernentea
Order: Spirurida
Suborder: Spirurina
Family: Onchocercidae
Genus: Wuchereria
Species: W. bancrofti
Binomial name
Wuchereria bancrofti
(Cobbold, 1877) Seurat, 1921

Wuchereria bancrofti is a human parasitic roundworm that is the major cause of lymphatic filariasis. It is one of the three parasitic worms, besides Brugia malayi and B. timori, that infect lymphatic system to cause lymphatic filariasis. These filarial worms are spread by a mosquito vector. W. bancrofti is the most prevalent among the three and affects over 120 million people, primarily in Central Africa and the Nile delta, South and Central America, and the tropical regions of Asia including southern China and the Pacific.[1] If the infection is left untreated, it can develop into a chronic disease called elephantiasis.[2] In rare conditions it also causes tropical eosinophilia, an asthmatic disease. Limited treatment modalities exist and no vaccines have been developed.


  • History 1
  • Morphology 2
  • Life cycle 3
  • Epidemiology 4
  • Pathology 5
  • Diagnosis 6
  • Treatment 7
  • Control 8
  • Eradication 9
  • References 10
  • External links 11


The effects of W. bancrofti were documented early in ancient text. Ancient Greek and Roman writers noted the similarities between the enlarged limbs and cracked skin of infected individuals to that of elephants. Since then, this condition has been commonly known as elephantiasis. However, this is a misnomer, since elephantiasis literally translates to “a disease caused by elephants”.

W. bancrofti was named after physician Otto Wucherer and parasitologist Joseph Bancroft, both of whom extensively studied filarial infections.

W. bancrofti is speculated to have been brought to the New World by the slave trade.[3] Once it was introduced to the New World, this filarial worm disease persisted throughout the areas surrounding Charleston, South Carolina until its sudden disappearance in the 1920s.[4]


As ovoviviparous and can produce thousands of juveniles known as microfilariae.[5]

The microfilaria is a miniature adult and retains the egg membrane as a sheath and are often considered advanced embryos. It measures 280 μm long and 25 μm wide. It is quite structureless in living condition. However by histological staining it is shown to have primitive gut, nerve ring and muscles.[6]

Life cycle

Life cycle of Wuchereria bancrofti

W. bancrofti carry out their life cycle in two hosts. Human beings serve as the definitive host and mosquitoes as their intermediate hosts. The adult parasites reside in the lymphatics of the human host. They are found mostly in the afferent lymphatic channels of the lymph glands in the lower part of the body. The first-stage larvae, known as microfilariae, are present in the circulation. The microfilariae have a membrane "sheath". This sheath, along with the area in which the worms reside, makes identification of the species of microfilariae in humans easier to determine. The microfilariae are found mainly in the peripheral blood and can be found at peak amounts from 10 p.m. to 4 a.m. They migrate between the deep and the peripheral circulation exhibiting unique diurnal periodicity. During the day, they are present in the deep veins, and during the night, they migrate to the peripheral circulation. The cause of this periodicity remains unknown, but the advantages of the microfilariae being in the peripheral blood during these hours may ensure the vector, the nighttime mosquito, will have a higher chance of transmitting them elsewhere. Physiological changes also are associated with sleeping, such as lowered body temperature, oxygen tension and adrenal activity, and an increased carbon dioxide tension, among other physical alterations, any of which could be the signals for the rhythmic behavior of microfilarial parasites. If the hosts sleep by day and are awake at night, their periodicity is reversed. In the South Pacific, where W. bancrofti shows diurnal periodicity, it is known as periodic.

The microfilariae are transferred into a vector, which are most commonly mosquito species of the genera Culex, Anopheles, Mansonia, and Aedes. Inside the mosquito, the microfilariae mature into motile larvae called juveniles. When the infected mosquito has its next blood meal, W. bancrofti is egested via the mosquito’s proboscis into the blood stream of the new human host. The larvae move through the lymphatic system to regional lymph nodes, predominantly in the legs and genital area. The larvae develop into adult worms over the course of a year, and reach sexual maturity in the afferent lymphatic vessels. After mating, the adult female worm can produce thousands of microfilariae that migrate into the bloodstream. A mosquito vector can bite the infected human host, ingest the microfilariae, and thus repeat the life cycle.[6][7][8]


An infection in leg by Wuchereria bancrofti

W. bancrofti is responsible for 90% of lymphatic filariasis. Recently, 120 million worldwide cases of lymphatic filariasis were estimated. W. bancrofti largely affects areas across the broad equatorial belt (Africa, the Nile Delta, Turkey, India, the East Indies, Southeast Asia, Philippines, Oceanic Islands, and parts of South America.)

The mosquito vectors of W. bancrofti have a preference for human blood; humans are apparently the only animals naturally infected with W. bancrofti. There is no reservoir host,[9] and the disease could therefore potentially be eradicated.


The pathogenesis of W. bancrofti infection is dependent on the immune system and inflammatory responses of the host. After infection, the worms will mature within 6–8 months, male and female worms will mate and then release the microfilariae. These microfilariae can be released for up to ten years.

  1. The asymptomatic phase usually consists of high microfilaremia infection, and individuals show no symptoms of being infected. This occurs due to cytokine IL-4 suppressing the activity of TH1 cells in the immune system. This can occur for years until the inflammatory reaction rises again.
  2. In the inflammatory (acute) phase, the antigens from the female adult worms elicit inflammatory responses. The worms in the lymph channels disrupt the flow of the lymph, causing lymphedema. The individual will exhibit fever, chills, skin infections, painful lymph nodes, and tender skin of the lymphedematous extremity. These symptoms often lessen after five to seven days. Other symptoms that may occur include orchitis, an inflammation of the testes, which is accompanied by painful, immediate enlargement and epididymitis (inflammation of the spermatic cord).
  3. The obstructive (chronic) phase is marked by lymph varices, lymph scrotum, hydrocele, chyluria (lymph in urine), and elephantiasis. Microfilariae are not normally present in this phase. A key feature of this phase is scar formation from affected tissue areas. Other features include thickening of the skin and elephantiasis, which develops gradually with the attack of the lymphatic system. Elephantiasis affects men mainly in the legs, arms, and scrotum. In women, the legs, arms, and breasts are affected.
Wuchereria bancrofti
Classification and external resources
ICD-10 B74.0
ICD-9-CM 125.0
DiseasesDB 29234


A blood smear is a simple and fairly accurate diagnostic tool, provided the blood sample is taken during the period in the day when the juveniles are in the peripheral circulation.[10] Technicians analyzing the blood smear must be able to distinguish between W. bancrofti and other parasites potentially present.

A polymerase chain reaction test can also be performed to detect a minute fraction, as little as 1 pg, of filarial DNA.[11]

Some infected people do not have microfilariae in their blood. As a result, tests aimed to detect antigens from adult worms can be used.

Ultrasonography can also be used to detect the movements and noises caused by the movement of adult worms.[12]

Dead, calcified worms can be detected by X-ray examinations.


The severe symptoms caused by the parasite can be avoided by cleansing the skin, surgery, or the use of therapeutic drugs, such as diethylcarbamazine (DEC), ivermectin, or albendazole. The drug of choice, however, is DEC, which can eliminate the microfilariae from the blood and also kill the adult worms with a dosage of 6 mg/kg semiannually or annually.[13] A polytherapy treatment that includes ivermectin with DEC or albendazole is more effective than each drug alone.[14] Protection is similar to that of other mosquito-spread illnesses; one can use barriers both physical (a mosquito net), chemical (insect repellent), or mass chemotherapy as a method to control the spread of the disease.

Mass chemotherapy should cover the entire endemic area at the same time. This will significantly decrease the overall microfilarial titer in blood in mass, hence decreasing the transmission through mosquitoes during their subsequent bites.

Antibiotic active against the Wolbachia symbionts of the worm have been experimented with as treatment.[15]


Prevention focuses on protecting against mosquito bites in endemic regions. Insect repellents and mosquito nets are useful to protect against mosquito bites. Public education efforts must also be made within the endemic areas of the world to successfully lower the prevalence of W. bancrofti infections.


The WHO is coordinating an effort to eradicate filarisis. The mainstay of this programme is the mass use of antifilarial drugs on a regular basis for at least five years.

In April 2011, Sri Lanka was certified by the WHO as having eradicated this disease.


  1. ^ Melrose WD (2002). "Lymphatic filariasis: New insights into an old disease".  
  2. ^ "Wuchereria bancrofti: The causative agent of Bancroftian Filariasis". Retrieved 20 February 2014. 
  3. ^ Laurence BR (1989). "The global dispersal of bancroftian filariasis".  
  4. ^ Chernin E (1987). "The disappearance of bancroftian filariasis from Charleston, South Carolina".  
  5. ^ "Lymphatic Filariasis". Stanford University. Retrieved 20 February 2014. 
  6. ^ a b Junghanss, Jeremy Farrar, Peter J. Hotez, Thomas (2013). Manson's Tropical Diseases: Expert Consult - Online (23rd ed.). Oxford: Elsevier/Saunders. pp. e49–e52.  
  7. ^ Ridley, John W. (2012). Parasitology for Medical and Clinical Laboratory Professionals. Clifton Park, N.Y.: Cengage Learning. pp. 103–104.  
  8. ^ Rajan, T.V. (2008). Textbook of Medical Parasitology. BI Publications Pvt Ltd. pp. 73–77.  
  9. ^ King CL, Freedman DP (2000). "Filariasis". In G.T. Strickland. Hunter's tropical medicine and emerging infectious diseases (8th ed.). Philadelphia: E.B. Saunders. pp. 740–53.  
  10. ^ van Hoegaerden M, Ivanoff B (1986). "A rapid, simple method for isolation of viable microfilariae".  
  11. ^ Zhong M, McCarthy J, Bierwert L, Lizotte-Waniewski M, Chanteau S, Nutman TB, Ottesen EA, Williams SA (1996). "A polymerase chain reaction assay for detection of the parasite Wuchereria bancrofti in human blood samples".  
  12. ^ Amaral F, Dryer G, Figueredo-Silva J, Noroes J, Cavalcanti A, Samico SC, Santos A, Coutinho A (1994). "Live adult worms detected by ultrasonography in human Bancroftian filariasis".  
  13. ^ Eberhard ML, Hightower AW, Addiss DG, Lammine PJ (1997). "Clearance of Wuchereria bancrofti antigen after treatment with diethylcarbamazine or ivermectin".  
  14. ^ de Kraker ME, Stolk WA, van Oortmarssen GJ, Habbema JD (May 2006). "Model-based analysis of trial data: microfilaria and worm-productivity loss after diethylcarbamazine-albendazole or ivermectin-albendazole combination therapy against Wuchereria bancrofti".  
  15. ^ Taylor, MJ; Makunde, WH; McGarry, HF; Turner, JD; Mand, S; Hoerauf, A (2005). "Macrofilaricidal activity after doxycycline treatment of Wuchereria bancrofti: a double-blind, randomised placebo-controlled trial". Lancet 365 (9477): 2116–21.  

External links

  • History of Wuchereria Bancrofti
  • Animal Diversity Web
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.