World Library  
Flag as Inappropriate
Email this Article

802.11g

Article Id: WHEBN0000286421
Reproduction Date:

Title: 802.11g  
Author: World Heritage Encyclopedia
Language: English
Subject: Linksys, JetDirect, Kismet (software), Inter-Access Point Protocol, IEEE 802.11d-2001, IEEE 802.11h-2003, IEEE 802.11j-2004, IEEE 802.11v, IEEE 802.11n-2009, Out-broadcasting
Collection:
Publisher: World Heritage Encyclopedia
Publication
Date:
 

802.11g

IEEE 802.11g-2003 or 802.11g is an amendment to the IEEE 802.11 specification that extended throughput to up to 54 Mbit/s using the same 2.4 GHz band as 802.11b. This specification under the marketing name of Wi-Fi has been implemented all over the world. The 802.11g protocol is now Clause 19 of the published IEEE 802.11-2007 standard, and Clause 19 of the published IEEE 802.11-2012 standard.

802.11 is a set of IEEE standards that govern wireless networking transmission methods. They are commonly used today in their 802.11a, 802.11b, 802.11g and 802.11n versions to provide wireless connectivity in the home, office and some commercial establishments.

Descriptions

802.11g is the third modulation standard for wireless LANs. It works in the 2.4 GHz band (like 802.11b) but operates at a maximum raw data rate of 54 Mbit/s, or about 22 Mbit/s net throughput (identical to 802.11a core, except for some additional legacy overhead for backward compatibility). 802.11g hardware is fully backwards compatible with 802.11b hardware. Details of making b and g work well together occupied much of the lingering technical process. In an 802.11g network, however, the presence of a legacy 802.11b participant will significantly reduce the speed of the overall 802.11g network. Some 802.11g routers employ a back-compatible mode for 802.11b clients called 54g LRS (Limited Rate Support).[1]

The modulation scheme used in 802.11g is orthogonal frequency-division multiplexing (OFDM) copied from 802.11a with data rates of 6, 9, 12, 18, 24, 36, 48, and 54 Mbit/s, and reverts to CCK (like the 802.11b standard) for 5.5 and 11 Mbit/s and DBPSK/DQPSK+DSSS for 1 and 2 Mbit/s. Even though 802.11g operates in the same frequency band as 802.11b, it can achieve higher data rates because of its heritage to 802.11a.

Adoption

The then-proposed 802.11g standard was rapidly adopted by consumers starting in January 2003, well before ratification, due to the desire for higher speeds and reductions in manufacturing costs. By summer 2003, most dual-band 802.11a/b products became dual-band/tri-mode, supporting a and b/g in a single mobile adapter card or access point.

Despite its major acceptance, 802.11g suffers from the same interference as 802.11b in the already crowded 2.4 GHz range. Devices operating in this range include microwave ovens, Bluetooth devices, baby monitors and digital cordless telephones, which can lead to interference issues. Additionally, the success of the standard has caused usage/density problems related to crowding in urban areas. To prevent interference, there are only three non-overlapping usable channels in the U.S. and other countries with similar regulations (channels 1, 6, 11, with 25 MHz separation), and four in Europe (channels 1, 5, 9, 13, with only 20 MHz separation). Even with such separation, some interference due to side lobes exists, though it is considerably weaker.

Channels and frequencies


IEEE 802.11g channel to frequency map [2]
Channel  Center Frequency  Channel Width Overlaps Channels
1 2.412 GHz 2.401 GHz - 2.423 GHz 2,3,4,5
2 2.417 GHz 2.406 GHz - 2.428 GHz 1,3,4,5,6
3 2.422 GHz 2.411 GHz - 2.433 GHz 1,2,4,5,6,7
4 2.427 GHz 2.416 GHz - 2.438 GHz 1,2,3,5,6,7,8
5 2.432 GHz 2.421 GHz - 2.443 GHz 1,2,3,4,6,7,8,9
6 2.437 GHz 2.426 GHz - 2.448 GHz 2,3,4,5,7,8,9,10
7 2.442 GHz 2.431 GHz - 2.453 GHz 3,4,5,6,8,9,10,11
8 2.447 GHz 2.436 GHz - 2.458 GHz 4,5,6,7,9,10,11,12
9 2.452 GHz 2.441 GHz - 2.463 GHz 5,6,7,8,10,11,12,13
10 2.457 GHz 2.446 GHz - 2.468 GHz 6,7,8,9,11,12,13
11 2.462 GHz 2.451 GHz - 2.473 GHz 7,8,9,10,12,13
12 2.467 GHz 2.456 GHz - 2.478 GHz 8,9,10,11,13,14
13 2.472 GHz 2.461 GHz - 2.483 GHz 9,10,11,12,14
14 2.484 GHz 2.473 GHz - 2.495 GHz 12,13
Note: Not all channels are legal to use in all countries.

See also

  • A1 A2 IEEE 802.11y-2008 extended operation of 802.11a to the licensed 3.7 GHz band. Increased power limits allow a range up to 5,000 m. As of 2009, it is only being licensed in the United States by the FCC.
  • B1 B2 Assumes short guard interval (SGI) enabled, otherwise reduce each data rate by 10%.

References

ja:IEEE 802.11#IEEE 802.11g
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.