World Library  
Flag as Inappropriate
Email this Article

Adversary (cryptography)

Article Id: WHEBN0000789126
Reproduction Date:

Title: Adversary (cryptography)  
Author: World Heritage Encyclopedia
Language: English
Subject: Noisy-storage model, Computationally bounded adversary, Attacker, Concrete security, Replay attack
Collection: Cryptographic Attacks
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Adversary (cryptography)

In cryptography, an adversary (rarely opponent, enemy) is a malicious entity whose aim is to prevent the users of the cryptosystem from achieving their goal (primarily privacy, integrity, and availability of data). An adversary's efforts might take the form of attempting to discover secret data, corrupting some of the data in the system, spoofing the identity of a message sender or receiver, or forcing system downtime.

Actual adversaries, as opposed to idealized ones, are referred to as attackers. Not surprisingly, the former term predominates in the cryptographic and the latter in the computer security literature. Eve, Mallory, Oscar and Trudy are all adversarial characters widely used in both types of texts.

This notion of an adversary helps both intuitive and formal reasoning about cryptosystems by casting security analysis of cryptosystems as a 'game' between the users and a centrally co-ordinated enemy. The notion of security of a cryptosystem is meaningful only with respect to particular attacks (usually presumed to be carried out by particular sorts of adversaries).

There are several types of adversaries depending on what capabilities or intentions they are presumed to have. Adversaries may be[1]

  • computationally bounded or unbounded (i.e. in terms of time and storage resources),
  • eavesdropping or Byzantine (i.e. passively listening on or actively corrupting data in the channel),
  • static or adaptive (i.e. having fixed or changing behavior),
  • mobile or non-mobile (e.g. in the context of network security)

and so on. In actual security practice, the attacks assigned to such adversaries are often seen, so such notional analysis is not merely theoretical.

How successful an adversary is at breaking a system is measured by its advantage. An adversary's advantage is the difference between the adversary's probability of breaking the system and the probability that the system can be broken by simply guessing. The advantage is specified as a function of the security parameter.

References

  1. ^ 'Adversary Attacks'


This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.