World Library  
Flag as Inappropriate
Email this Article

Aether theories

Article Id: WHEBN0002249310
Reproduction Date:

Title: Aether theories  
Author: World Heritage Encyclopedia
Language: English
Subject: Einstein aether theory, Etheric plane, Oliver Lodge, Aethyr, Vacuum
Collection: Aether Theories, Vacuum
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Aether theories

Aether theories (Chris Zinerman) in physics propose the existence of a medium, the aether (also spelled ether, from the Greek word (αἰθήρ), meaning "upper air" or "pure, fresh air"[1]), a space-filling substance or field, thought to be necessary as a transmission medium for the propagation of electromagnetic or gravitational forces. The assorted aether theories embody the various conceptions of this "medium" and "substance". This early modern aether has little in common with the aether of classical elements from which the name was borrowed. Since the development of special relativity, theories using a substantial aether fell out of use in modern physics, and were replaced by more abstract models.[2]

Contents

  • Historical models 1
    • Luminiferous aether 1.1
    • Mechanical gravitational aether 1.2
  • Non-standard interpretations in modern physics 2
    • General relativity 2.1
    • Quantum vacuum 2.2
    • Pilot waves 2.3
  • Conjectures and proposals 3
  • See also 4
  • References 5
  • Further reading 6

Historical models

Luminiferous aether

Isaac Newton suggest the existence of an aether: "Doth not this aethereal medium in passing out of water, glass, crystal, and other compact and dense bodies in empty spaces, grow denser and denser by degrees, and by that means refract the rays of light not in a point, but by bending them gradually in curve lines? ...Is not this medium much rarer within the dense bodies of the Sun, stars, planets and comets, than in the empty celestial space between them? And in passing from them to great distances, doth it not grow denser and denser perpetually, and thereby cause the gravity of those great bodies towards one another, and of their parts towards the bodies; every body endeavouring to go from the denser parts of the medium towards the rarer?"[3]

In the 19th century, luminiferous aether (or ether), meaning light-bearing aether, was a theorized medium for the propagation of light (electromagnetic radiation). However, a series of increasingly complex experiments had been carried out in the late 1800s like the Michelson-Morley experiment in an attempt to detect the motion of Earth through the aether, and had failed to do so. A range of proposed aether-dragging theories could explain the null result but these were more complex, and tended to use arbitrary-looking coefficients and physical assumptions. Joseph Larmor discussed the aether in terms of a moving magnetic field caused by the acceleration of electrons.

James Clerk Maxwell said of the aether, "In several parts of this treatise an attempt has been made to explain electromagnetic phenomena by means of mechanical action transmitted from one body to another by means of a medium occupying the space between them. The undulatory theory of light also assumes the existence of a medium. We have now to show that the properties of the electromagnetic medium are identical with those of the luminiferous medium."[4]

Lorentz ether theory a more elegant solution to how the motion of an absolute aether could be undetectable (length contraction), but if their equations were correct, Albert Einstein's 1905 special theory of relativity could generate the same mathematics without referring to an aether at all. This led most physicists to conclude that this early modern notion of a luminiferous aether was not a useful concept. Einstein however stated that this consideration was too radical and too anticipate and that his relativity still needed the presence of a medium with certain properties.

Mechanical gravitational aether

From the 16th until the late 19th century, gravitational phenomena had also been modelled utilizing an aether. The most well-known formulation is Le Sage's theory of gravitation, although other models were proposed by Isaac Newton, Bernhard Riemann, and Lord Kelvin. None of those concepts is considered to be viable by the scientific community today.

Non-standard interpretations in modern physics

General relativity

Einstein sometimes used the word aether for the gravitational field within general relativity, but this terminology never gained widespread support.[5]

We may say that according to the general theory of relativity space is endowed with physical qualities; in this sense, therefore, there exists an aether. According to the general theory of relativity space without aether is unthinkable; for in such space there not only would be no propagation of light, but also no possibility of existence for standards of space and time (measuring-rods and clocks), nor therefore any space-time intervals in the physical sense. But this aether may not be thought of as endowed with the quality characteristic of ponderable media, as consisting of parts which may be tracked through time. The idea of motion may not be applied to it.[6]

Quantum vacuum

Quantum mechanics can be used to describe spacetime as being non-empty at extremely small scales, fluctuating and generating particle pairs that appear and disappear incredibly quickly. It has been suggested by some such as Paul Dirac[7] that this quantum vacuum may be the equivalent in modern physics of a particulate aether. However, Dirac's aether hypothesis was motivated by his dissatisfaction with quantum electrodynamics, and it never gained support by the mainstream scientific community.[8]

Robert B. Laughlin, Nobel Laureate in Physics, endowed chair in physics, Stanford University, had this to say about ether in contemporary theoretical physics:

It is ironic that Einstein's most creative work, the general theory of relativity, should boil down to conceptualizing space as a medium when his original premise [in special relativity] was that no such medium existed [..] The word 'ether' has extremely negative connotations in theoretical physics because of its past association with opposition to relativity. This is unfortunate because, stripped of these connotations, it rather nicely captures the way most physicists actually think about the vacuum. . . . Relativity actually says nothing about the existence or nonexistence of matter pervading the universe, only that any such matter must have relativistic symmetry. [..] It turns out that such matter exists. About the time relativity was becoming accepted, studies of radioactivity began showing that the empty vacuum of space had spectroscopic structure similar to that of ordinary quantum solids and fluids. Subsequent studies with large particle accelerators have now led us to understand that space is more like a piece of window glass than ideal Newtonian emptiness. It is filled with 'stuff' that is normally transparent but can be made visible by hitting it sufficiently hard to knock out a part. The modern concept of the vacuum of space, confirmed every day by experiment, is a relativistic ether. But we do not call it this because it is taboo.[9]

Pilot waves

Louis de Broglie stated, "Any particle, ever isolated, has to be imagined as in continuous “energetic contact” with a hidden medium."[10][11]

Conjectures and proposals

According to the philosophical point of view of Einstein, Dirac, Bell, Polyakov, ’t Hooft, Laughlin, de Broglie, Maxwell, Newton and other theorists, there might be a medium with physical properties filling 'empty' space, an Aether, enabling the observed physical processes.

Albert Einstein in 1894 or 1895: ”The velocity of a wave is proportional to the square root of the elastic forces which cause [its] propagation, and inversely proportional to the mass of the aether moved by these forces." [12]

Albert Einstein in 1920: ”We may say that according to the general theory of relativity space is endowed with physical qualities; in this sense, therefore, there exists an Aether. According to the general theory of relativity space without Aether is unthinkable; for in such space there not only would be no propagation of light, but also no possibility of existence for standards of space and time (measuring-rods and clocks), nor therefore any space-time intervals in the physical sense. But this Aether may not be thought of as endowed with the quality characteristic of ponderable media, as consisting of parts which may be tracked through time. The idea of motion may not be applied to it.” [13]

Paul Dirac wrote in 1951:[7] "Physical knowledge has advanced much since 1905, notably by the arrival of quantum mechanics, and the situation [about the scientific plausibility of Aether] has again changed. If one examines the question in the light of present-day knowledge, one finds that the Aether is no longer ruled out by relativity, and good reasons can now be advanced for postulating an Aether. . . . . . . .We have now the velocity at all points of space-time, playing a fundamental part in electrodynamics. It is natural to regard it as the velocity of some real physical thing. Thus with the new theory of electrodynamics [vacuum filled with virtual particles] we are rather forced to have an Aether".

John Bell in 1986, interviewed by Paul Davies in "The Ghost in the Atom" has suggested that an Aether theory might help resolve the EPR paradox by allowing a reference frame in which signals go faster than light.He suggests Lorentz contraction is perfectly coherent, not inconsistent with relativity, and could produce an aether theory perfectly consistent with the Michelson-Morley experiment. Bell suggests the aether was wrongly rejected on purely philosophical grounds: "what is unobservable does not exist" [p. 49]. Einstein found the non-aether theory simpler and more elegant, but Bell suggests that doesn't rule it out. Besides the arguments based on his interpretation of quantum mechanics, Bell also suggests resurrecting the aether because it is a useful pedagogical device. That is, many problems are solved more easily by imagining the existence of an aether.

According to

  • Whittaker, Edmund Taylor (1910), A History of the theories of aether and electricity (1 ed.), Dublin: Longman, Green and Co. 
  • Schaffner, Kenneth F. (1972), Nineteenth-century aether theories, Oxford: Pergamon Press,  
  • Darrigol, Olivier (2000), Electrodynamics from Ampére to Einstein, Oxford: Clarendon Press,  
  • Maxwell, James Clerk (1878), "Ether",  
  • Harman, P.H. (1982), Energy, Force and Matter: The Conceptual Development of Nineteenth Century Physics, Cambridge: Cambridge University Press,  
  • Decaen, Christopher A. (2004), "Aristotle's Aether and Contemporary Science", The Thomist 68: 375–429, retrieved 2011-03-05. 
  • Joseph Larmor, "Ether", Encyclopædia Britannica, Eleventh Edition (1911).
  • Oliver Lodge, "Ether", Encyclopædia Britannica, Thirteenth Edition (1926).
  • "A Ridiculously Brief History of Electricity and Magnetism; Mostly from E. T. Whittaker’s A History of the Theories of Aether and Electricity". (PDF format)
  • Epple, M. (1998) "Topology, Matter, and Space, I: Topological Notions in 19th-Century Natural Philosophy", Archive for History of Exact Sciences 52: 297–392.

Further reading

  1. ^ "Aether", American Heritage Dictionary of the English Language.
  2. ^  
  3. ^ Isaac Newton The Third Book of Opticks (1718) http://www.newtonproject.sussex.ac.uk/view/texts/normalized/NATP00051
  4. ^ James Clerk Maxwell: "A Treatise on Electricity and Magnetism/Part IV/Chapter XX"
  5. ^ Kostro, L. (1992), "An outline of the history of Einstein's relativistic ether concept", in Jean Eisenstaedt & Anne J. Kox, Studies in the history of general relativity 3, Boston-Basel-Berlin: Birkhäuser, pp. 260–280,  
  6. ^ Einstein, Albert: "Ether and the Theory of Relativity" (1920), republished in Sidelights on Relativity (Methuen, London, 1922)
  7. ^ a b Dirac, Paul: "Is there an Aether?", Nature 168 (1951), p. 906.
  8. ^ Kragh, Helge (2005). Dirac. A Scientific Biography. Cambridge: Cambridge University Press. pp. 200–203.  
  9. ^ Laughlin, Robert B. (2005). A Different Universe: Reinventing Physics from the Bottom Down. NY, NY: Basic Books. pp. 120–121.  
  10. ^ a b Annales de la Fondation Louis de Broglie, Volume 12, no.4, 1987
  11. ^ Foundations of Physics, Volume 13, Issue 2. Springer. 1983. pp. 253–286.  
  12. ^ Albert Einstein's 'First' Paper (1894 or 1895), http://www.straco.ch/papers/Einstein%20First%20Paper.pdf
  13. ^ Einstein, Albert: "Ether and the Theory of Relativity" (1920), republished in Sidelights on Relativity (Methuen, London, 1922)
  14. ^ R. Brunetti and A. Zeilinger (Eds.), Quantum (Un)speakables, Springer, Berlin (2002), Ch. 22
  15. ^ M. Blasone, P. Jizba and H. Kleinert,.“Path Integral Approach to 't Hooft's Derivation of Quantum from Classical Physics”, Phys.Rev. A71 (2005) 052507, arXiv:quant-ph/0409021

References

See also


Louis de Broglie, "If a hidden sub-quantum medium is assumed, knowledge of its nature would seem desirable. It certainly is of quite complex character. It could not serve as a universal reference medium, as this would be contrary to relativity theory."[10]

“have attempted to substantiate the recent proposal of G. ’t Hooft in which quantum theory is viewed as not a complete field theory, but is in fact an emergent phenomenon arising from a deeper level of dynamics. The underlying dynamics are taken to be classical mechanics with singular Lagrangians supplied with an appropriate information loss condition. With plausible assumptions about the actual nature of the constraint dynamics, quantum theory is shown to emerge when the classical Dirac-Bergmann algorithm for constrained dynamics is applied to the classical path integral . . . ”. [15]

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.