World Library  
Flag as Inappropriate
Email this Article

Avalanche effect

Article Id: WHEBN0000769439
Reproduction Date:

Title: Avalanche effect  
Author: World Heritage Encyclopedia
Language: English
Subject: Cryptographic hash function, WikiProject Cryptography, MD5, CubeHash, Kupyna
Collection: Symmetric-Key Cryptography
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Avalanche effect

In cryptography, the avalanche effect refers to a desirable property of cryptographic algorithms, typically block ciphers and cryptographic hash functions. The avalanche effect is evident if, when an input is changed slightly (for example, flipping a single bit) the output changes significantly (e.g., half the output bits flip). In the case of high-quality block ciphers, such a small change in either the key or the plaintext should cause a drastic change in the ciphertext. The actual term was first used by Horst Feistel,[1] although the concept dates back to at least Shannon's diffusion.

The SHA-1 hash function exhibits good avalanche effect. When a single bit is changed the hash sum becomes completely different.

If a block cipher or cryptographic hash function does not exhibit the avalanche effect to a significant degree, then it has poor randomization, and thus a cryptanalyst can make predictions about the input, being given only the output. This may be sufficient to partially or completely break the algorithm. Thus, the avalanche effect is a desirable condition from the point of view of the designer of the cryptographic algorithm or device.

Constructing a cipher or hash to exhibit a substantial avalanche effect is one of the primary design objectives. This is why most block ciphers are product ciphers. It is also why hash functions have large data blocks. Both of these features allow small changes to propagate rapidly through iterations of the algorithm, such that every bit of the output should depend on every bit of the input before the algorithm terminates.

Contents

  • Strict avalanche criterion 1
  • Bit independence criterion 2
  • See also 3
  • References 4

Strict avalanche criterion

The strict avalanche criterion (SAC) is a formalization of the avalanche effect. It is satisfied if, whenever a single input bit is complemented, each of the output bits changes with a 50% probability. The SAC builds on the concepts of completeness and avalanche and was introduced by Webster and Tavares in 1985.[2]

Higher-order generalizations of SAC involve multiple input bits. Boolean functions which satisfy the highest order SAC are always bent functions, also called maximally nonlinear functions, also called "perfect nonlinear" functions.[3]

Bit independence criterion

The bit independence criterion (BIC) states that output bits j and k should change independently when any single input bit i is inverted, for all i, j and k.

See also

References

  1. ^ Feistel, Horst (1973). "Cryptography and Computer Privacy".  
  2. ^ Webster, A. F.; Tavares, Stafford E. (1985). "On the design of S-boxes". Advances in Cryptology - Crypto '85. Lecture Notes in Computer Science 218. New York, NY,: Springer-Verlag New York, Inc. pp. 523–534.  
  3. ^  
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.