World Library  
Flag as Inappropriate
Email this Article

Avida

Article Id: WHEBN0000451178
Reproduction Date:

Title: Avida  
Author: World Heritage Encyclopedia
Language: English
Subject: Artificial life, Charles Ofria, William A. Dembski, Michigan State University academics
Collection: Artificial Life, Artificial Life Models, Digital Organisms
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Avida

Map tab of Avida 2.6

Avida is an Charles Ofria's Digital Evolution Lab at Michigan State University; the first version of Avida was designed in 1993 by Ofria, Chris Adami and C. Titus Brown at Caltech, and as been fully rengineered by Ofria on multiple occasions since then. The software was originally inspired by the Tierra system.

Contents

  • Design principles 1
  • Use in research 2
  • See also 3
  • References 4
  • External links 5
    • Scientific publications featuring Avida 5.1

Design principles

Tierra simulated an evolutionary system by introducing computer programs that competed for computer resources, specifically processor (CPU) time and access to main memory. In this respect it was similar to Core Wars, but differed in that the programs being run in the simulation were able to modify themselves, and thereby evolve. Tierra's programs were artificial life organisms.

Unlike Tierra, Avida assigns every digital organism its own protected region of memory, and executes it with a separate virtual CPU. By default, other digital organisms cannot access this memory space, neither for reading nor for writing, and cannot execute code that is not in their own memory space.

A second major difference is that the virtual CPUs of different organisms can run at different speeds, such that one organism executes, for example, twice as many instructions in the same time interval as another organism. The speed at which a virtual CPU runs is determined by a number of factors, but most importantly, by the tasks that the organism performs: logical computations that the organisms can carry out to reap extra CPU speed as bonus.

Use in research

Adami and Ofria, in collaboration with others, have used Avida to conduct research in digital evolution, and the scientific journals Nature and Science have published four of their papers.

The 2003 paper "The Evolutionary Origin of Complex Features" describes the evolution of a mathematical equals operation from simpler bitwise operations.[1]

See also

References

  1. ^  

External links

  • Avida Software - MSU Devolab
  • Avida-ED Project - Robert T. Pennock
  • An Avida Developer's Site
  • MSU Devolab website

Scientific publications featuring Avida

  • C. Adami and C.T. Brown (1994), Evolutionary Learning in the 2D Artificial Life Systems Avida, in: R. Brooks, P. Maes (Eds.), Proc. Artificial Life IV, MIT Press, Cambridge, MA, p. 377-381. arXiv:adap-org/9405003v1
  • R. E. Lenski, C. Ofria, T. C. Collier, C. Adami (1999). Genome Complexity, Robustness, and Genetic Interactions in Digital Organisms. Nature 400:661-664. abstract of this article
  • C.O. Wilke, J.L. Wang, C. Ofria, R.E. Lenski, and C. Adami (2001). Evolution of Digital Organisms at High Mutation Rate Leads To Survival of the Flattest. Nature 412:331-333.
  • R.E. Lenski, C. Ofria, R.T. Pennock, and C. Adami (2003). The Evolutionary Origin of Complex Features. Nature 423:139-145.
  • S.S. Chow, C.O. Wilke, C. Ofria, R.E. Lenski, and C. Adami (2004). Adaptive Radiation from Resource Competition in Digital Organisms. Science 305:84-86.
  • J. Clune, D. Misevic, C. Ofria, R.E. Lenski, S.F. Elena, and R. Sanjuán. Natural selection fails to optimize mutation rates for long-term adaptation on rugged fitness landscapes. PLoS Computational Biology 4(9): 2008. full text available
  • Clune J, Goldsby HJ, Ofria C, and Pennock RT (2011) Selective pressures for accurate altruism targeting: Evidence from digital evolution for difficult-to-test aspects of inclusive fitness theory. Proceedings of the Royal Society. pdf
  • Benjamin E. Beckmann, Philip K. McKinley, Charles Ofria (2007). Evolution of an adaptive sleep response in digital organisms. ECAL 2007 pdf
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.