World Library  
Flag as Inappropriate
Email this Article




Classification and external resources
Specialty Infectious disease
ICD-10 B60.0
ICD-9-CM 088.82
DiseasesDB 1200
MeSH D001404

Babesiosis is a malaria-like parasitic disease caused by infection with Babesia, a genus of protozoal piroplasms.[1] Human babesiosis is an uncommon but emerging disease in the Northeastern and Midwestern United States and parts of Europe, and sporadic throughout the rest of the world. It occurs in warm months.[2] Ticks transmit the human form of babesiosis, so it often presents with other tick-borne illnesses such as Lyme disease.[3] After trypanosomes, Babesia is thought to be the second-most common blood parasite of mammals, and they can have a major impact on health of domestic animals in areas without severe winters. In cattle, a major host, the disease is known as Texas cattle fever, redwater, or piroplasmosis.[4]


  • Classification 1
  • Signs and symptoms 2
  • Pathophysiology 3
  • Diagnosis 4
  • Treatment 5
  • Epidemiology 6
    • Isolated cases 6.1
  • History 7
  • In other animals 8
  • References 9
  • External links 10


Babesia species are in the phylum Apicomplexa, which also has the protozoan parasites that cause malaria, toxoplasmosis, and cryptosporidiosis.[3] Four clades of Babesia species infect humans. The main species in each clade are:

  1. B. microti (<3 µm)
  2. B. duncani, related to babesia of dogs
  3. B. divergens (cattle parasite seen mostly in Europe) and B. venatorum (roe deer parasite, formerly called EU1), most closely related to the large babesia clade
  4. Large Babesia (>3 µm) mostly infects ungulates, but also includes K01 strain (an isolated case observed in South Korea, see isolated cases)

Signs and symptoms

Half of all children and a quarter of previously healthy adults are asymptomatic with Babesia infection. For those who develop symptoms, they are similar to malaria, because both cause fever and hemolytic anemia.[3] People with symptoms usually become ill 1 to 4 weeks after the bite, or 1 to 9 weeks after transfusion of contaminated blood products. A person infected with babesiosis gradually develops malaise and fatigue, followed by a fever. Hemolytic anemia, in which red blood cells are destroyed and removed, also develops. Chills, sweats, and thrombocytopenia (a low number of platelets in the blood) are also common symptoms.

Less common symptoms and physical exam findings of mild-to-moderate babesiosis:[3]

In more severe cases, symptoms similar to splenectomy. Severe cases are also more likely to occur in the very young, very old, and persons with immunodeficiency, such as HIV/AIDS patients.

A reported increase in human babesiosis diagnoses in the 2000s is thought to be caused by more widespread testing and higher numbers of people with immunodeficiencies coming in contact with ticks, the disease vector.[4] Little is known about the occurrence of Babesia species in malaria-endemic areas, where Babesia can easily be misdiagnosed as Plasmodium.

Human patients with babesiosis may exhibit premunity.[6]


Babesia lifecycle

Babesia parasites reproduce in red blood cells, where they can be seen as cross-shaped inclusions (four merozoites asexually budding, but attached together forming a structure looking like a "Maltese cross")[7] and cause hemolytic anemia, quite similar to malaria.

Unlike the Plasmodium parasites that cause malaria, Babesia species lack an exoerythrocytic phase, so the liver is usually not affected.

In nonhuman animals, Babesia canis rossi, Babesia bigemina, and Babesia bovis cause particularly severe forms of the disease, including a severe haemolytic anaemia, with positive erythrocyte-in-saline-agglutination test indicating an immune-mediated component to the haemolysis. Common sequelae include haemoglobinuria "red-water", disseminated intravascular coagulation, and "cerebral babesiosis" caused by sludging of erythrocytes in cerebral capillaries.

In bovine species, the organism causes hemolytic anemia, so an infected animal shows pale mucous membranes initially. As the levels of bilirubin (a byproduct of red blood cell lysis) continue to increase, the visible mucous membranes become yellow in color (icterus) due to the failure of the liver to metabolise the excess bilirubin. Hemoglobinuria is seen due to excretion of red-blood-cell lysis byproducts via the kidneys. Fever of 40.5 °C (105 °F) develops due to release of inflammatory byproducts.


Only specialized laboratories can adequately diagnose Babesia infection in humans, and as a result, Babesia infections are considered highly under-reported. It develops in patients who live in or travel to an endemic area or receive a contaminated blood transfusion within the preceding 9 weeks, so this aspect of the medical history is vital.[8] Babesiosis may be suspected when a person with such an exposure history develops persistent fevers and hemolytic anemia. The definitive diagnostic test is the identification of parasites on a Giemsa-stained thin blood smear.[8]

So-called "Maltese cross formations" on the blood film are essentially diagnostic of babesiosis, since they are not seen in malaria, the primary differential diagnosis.[7] Careful examination of multiple smears may be necessary, since Babesia may infect less than 1% of circulating red blood cells, thus be easily overlooked.[9]

Serologic testing for antibodies against Babesia (both IgG and IgM) can detect low-level infection in cases with a high clinical suspicion, but negative blood film examinations. Serology is also useful for differentiating babesiosis from malaria in cases where people are at risk for both infections. Since detectable antibody responses require about a week after infection to develop, serologic testing may be falsely negative early in the disease course.[10]

A polymerase chain reaction (PCR) test has been developed for the detection of Babesia from the peripheral blood.[11] PCR may be at least as sensitive and specific as blood film examination in diagnosing babesiosis, though it is also significantly more expensive.[12] Most often, PCR testing is used in conjunction with blood film examination and possibly serologic testing.[8]

Other laboratory findings include decreased numbers of red blood cells and platelets on complete blood count.

In animals, babesiosis is suspected by observation of clinical signs (haemoglobinuria and anaemia) in animals in endemic areas. Diagnosis is confirmed by observation of merozoites on thin film blood smear examined at maximum magnification under oil using Romonovski stains (methylene blue and eosin). This is a routine part of the veterinary examination of dogs and ruminants in regions where babesiosis is endemic.

Babesia canis and B. bigemina are "large Babesias" that form paired merozoites in the erythrocytes, commonly described as resembling "two pears hanging together", rather than the "Maltese cross" of the "small Babesias". Their merozoites are around twice the size of small Babesias.

Cerebral babesiosis is suspected in vivo when neurological signs (often severe) are seen in cattle that are positive for B. bovis on blood smear, but this has yet to be proven scientifically. Outspoken red discolouration of the grey matter post mortem further strengthens suspicion of cerebral babesiosis. Diagnosis is confirmed post mortem by observation of Babesia-infected erythrocytes sludged in the cerebral cortical capillaries in a brain smear.


In mild-to-moderate babesiosis, the treatment of choice is a combination of atovaquone and azithromycin. This regimen is preferred to clindamycin and quinine because side effects are fewer. The standard course is 7 to 10 days, but this is extended to at least 6 weeks in people with relapsing disease. It is recommended that even mild cases are treated to decrease the chance of inadvertently transmitting the infection by donating blood.[13] In life-threatening cases, exchange transfusion is performed.[14] In this procedure, the infected red blood cells are removed and replaced with uninfected ones. Imizol is a drug used for treatment of babesiosis in dogs.[15] Extracts of the poisonous, bulbous plant Boophone disticha are used in the folk medicine of South Africa to treat equine babesiosis. B. disticha is a member of the daffodil family Amaryllidaceae and has also been used in preparations employed as arrow poisons, hallucinogens, and in embalming. The plant is rich in alkaloids, some of which display an action similar to that of scopolamine.[16]


Babesiosis is a blood transfusion.[17][18] Ticks of domestic animals, especially Rhipicephalus (Boophilus) microplus and R. (B.) decoloratus transmit several species of Babesia to livestock, causing considerable economic losses to farmers in tropical and subtropical regions.

In the United States, the majority of babesiosis cases are caused by B. microti, and occur in the Northeast and northern Midwest from May through October.[3] Areas with especially high rates include eastern Long Island, Fire Island, Nantucket Island, and Martha's Vineyard.[19][20][21][22][23]

In Europe, B. divergens is the primary cause of infectious babesiosis and is transmitted by I. ricinus.[3]

Babesiosis has emerged in Lower Hudson Valley, New York since 2001.[24]

In Australia, babesiosis of types B. duncani and B. microti has recently been found in symptomatic patients along the eastern coastline of the continent.[25] A similar disease in cattle, commonly known as tick fever, is spread by Babesia bovis and B. bigemina in the introduced cattle tick Rhipicephalus microplus. This disease is found in eastern and northern Australia.[26]

Isolated cases

A table of isolated cases of babesiosis, which may be underestimated given how widely distributed the tick vectors are in temperate latitudes.[3]

Location Species
Pacific Coast (northern California to Washington) B. duncani
Kentucky, Missouri, and Washington State B. divergens
Austria, Germany, Italy B. venatorum
Canary islands B. microti
Africa (Egypt, Mozambique, South Africa) Uncharacterized spp.
Asia (Taiwan, Japan) B. microti
South Korea Babesia KO1[27]
Australia B. microti, B. duncani[25]
South America (Brazil, Colombia) Uncharacterized spp.


The disease is named for the genus of the causative organism,[28] which was named after the hemoglobinuria in cattle.[3] In 1893, Theobald Smith and Frederick Kilborne discovered that a tick was the vector for transmission in Texas cattle. The agent was B. bigemina. This was the first demonstration that an arthropod could act as a disease vector to transmit an infectious agent to a vertebrate host.

In 1957, the first human case was documented in a splenectomized Croatian herdsman.[3] The agent was B. divergens. In 1969, the first case was reported in an immunocompetent individual on Nantucket Island. The agent was B. microti, and the vector was the tick I. scapularis.

Equine babesiosis is also known as piroplasmosis (from the Latin piro, meaning pear + Greek plasma, a thing formed).[30]

In other animals

Veterinary treatment of babesiosis does not normally use antibiotics. In nonhuman animals, diminazen (Berenil), imidocarb, or trypan blue would be the drugs of choice for treatment of B. canis rossi (dogs in Africa), B. bovis, and B. bigemina (cattle in Southern Africa). In acute cases in cattle, blood transfusion may be carried out.

A vaccine is effective against B. canis canis (dogs in the Mediterranean region), but is ineffective against B. c. rossi. B. imitans causes a mild form of the disease that frequently resolves without treatment (dogs in Southeast Asia).


  1. ^ Berger, Stephen A.; Marr, John S. (2006). Human Parasitic Diseases Sourcebook. Jones & Bartlett Learning.  
  2. ^ Prevention, CDC - Centers for Disease Control and. "CDC - Babesiosis". (in en-us). Retrieved 2015-10-25. 
  3. ^ a b c d e f g h i Vannier, Edouard; Krause, Peter J. (21 June 2012). "Human Babesiosis". New England Journal of Medicine 366 (25): 2397–2407.  
  4. ^ a b c Hunfeld KP, Hildebrandt A, Gray JS (2008). "Babesiosis: Recent insights into an ancient disease". Int J Parasitol 38 (11): 1219–37.  
  5. ^ Wormser GP, et al. (2015). "Neutropenia in congenital and adult babesiosis". Am J Clin Pathol 144 (1): 94–96. 
  6. ^ Shaw, Susan E.; Day, Michael J. (11 April 2005). Arthropod-borne Infectious Diseases of the Dog and Cat. Manson Publishing. p. 71.  
  7. ^ a b Noskoviak K, Broome E (2008). "Images in clinical medicine. Babesiosis". N Engl J Med. 358 (17): e19.  
  8. ^ a b c Wormser GP, Dattwyler RJ, Shapiro ED; et al. (November 2006). "The clinical assessment, treatment, and prevention of Lyme disease, human granulocytic anaplasmosis, and babesiosis: clinical practice guidelines by the Infectious Diseases Society of America". Clin. Infect. Dis. 43 (9): 1089–134.  
  9. ^ Krause PJ (2003). "Babesiosis diagnosis and treatment". Vector Borne Zoonotic Dis. 3 (1): 45–51.  
  10. ^ Krause PJ, Telford SR, Ryan R; et al. (April 1994). "Diagnosis of babesiosis: evaluation of a serologic test for the detection of Babesia microti antibody". J. Infect. Dis. 169 (4): 923–6.  
  11. ^ Persing DH, Mathiesen D, Marshall WF; et al. (August 1992). "Detection of Babesia microti by polymerase chain reaction". J. Clin. Microbiol. 30 (8): 2097–103.  
  12. ^ Krause PJ, Telford S, Spielman A; et al. (November 1996). parasitemia"Babesia microti"Comparison of PCR with blood smear and inoculation of small animals for diagnosis of (PDF). J. Clin. Microbiol. 34 (11): 2791–4.  
  13. ^ Vannier, Edouard; Krause, Peter J. (21 June 2012). "Human Babesiosis". New England Journal of Medicine 366 (25): 2397–2407.  
  14. ^ Tanyel, Esra; Guler, Nil; Hokelek, Murat; Ulger, Fatma; Sunbul, Mustafa (2015). "A case of severe babesiosis treated successfully with exchange transfusion". Int J Infect Dis.  
  15. ^ "Imizol | Overview". Merck Animal Health. Retrieved 15 August 2015. 
  16. ^  
  17. ^ Herwaldt BL, Linden JV, Bosserman E, Young C, Olkowska D, Wilson M (2011). "Transfusion-associated babesiosis in the United States: a description of cases". Ann Intern Med 155 (8): 509–19.  
  18. ^ Leiby DA (2011). "Transfusion-associated babesiosis: shouldn't we be ticked off?". Ann Intern Med 155 (8): 556–7.  
  19. ^ Giannini, A. James; Black, Henry R.; Goettsche, Roger L. (1978). Psychiatric, psychogenic, and somatopsychic disorders handbook: a laboratory and clinical guide to the medical management of emotional and intellectual pathology. Medical Examination. p. 86.  
  20. ^ Belluck, Pam (September 6, 2009). "Tick-Borne Illnesses Have Nantucket Considering Some Deer-Based Solutions".  
  21. ^ Herwaldt BL, Persing DH, Précigout EA; et al. (1996). "A fatal case of babesiosis in Missouri: Identification of another piroplasm that infect humans" (PDF). Annals of Internal Medicine 124 (7): 643–50.  
  22. ^ Mylonakis E (May 2001). "When to suspect and how to monitor babesiosis". Am Fam Physician 63 (10): 1969–74.  
  23. ^ "Babesiosis FAQs".  
  24. ^ Joseph JT, Roy SS, Shams N, Visintainer P, Nadelman RB, Hosur S; et al. (May 2011). "Babesiosis in Lower Hudson Valley, New York, USA" (PDF). Emerg Infect Dis 17 (5): 843–7.  
    Related news articles: Laurie Tarkan (June 20, 2011). "Once Rare, Infection by Tick Bites Spreads".  
  25. ^ a b Mayne PJ (2011). "Emerging incidence of Lyme borreliosis, babesiosis, bartonellosis, and granulocytic ehrlichiosis in Australia". Int J Gen Med 4: 845–52.  
  26. ^ Queensland Government, Department of Primary Industries and Fisheries. "Tick fever (bovine babesiosis)". Retrieved 21 February 2012. 
  27. ^ Kim JY, Cho SH, Joo HN; et al. (June 2007). "First case of human babesiosis in Korea: detection and characterization of a novel type of Babesia sp. (KO1) similar to ovine babesia" (PDF). J. Clin. Microbiol. 45 (6): 2084–7.  
  28. ^ "babesia" at Merriam-Webster online.
  29. ^ Victor Babeş at Who Named It?
  30. ^ "Definition of Piroplasma". Retrieved November 9, 2011. 

External links

  • Center for Global Health. "Babesiosis". Parasites and Health, DPDx — Laboratory Identification of Parasites of Public Health Concern. Centers for Disease Control & Prevention. Public domain source from which the first version of this article was derived.
  • Homer MJ, Aguilar-Delfin I, Telford SR, Krause PJ, Persing DH (July 2000). "Babesiosis". Clin. Microbiol. Rev. 13 (3): 451–69.  
  • "Babesiosis: Overview" The Merck Veterinary Manual
  • Current status of Equine piroplasmosis worldwide at OIE. WAHID Interface - OIE World Animal Health Information Database
  • Disease card
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.