World Library  
Flag as Inappropriate
Email this Article

Boron trioxide

Article Id: WHEBN0002002950
Reproduction Date:

Title: Boron trioxide  
Author: World Heritage Encyclopedia
Language: English
Subject: Boric acid, Boron nitride, Aluminium oxide, Boron, Sesquioxides
Collection:
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Boron trioxide

Boron trioxide
Identifiers
CAS number  YesY
PubChem
ChemSpider  YesY
EC number
ChEBI  YesY
RTECS number ED7900000
Jmol-3D images Image 1
Properties
Molecular formula B2O3
Molar mass 69.6182 g/mol
Appearance white, glassy solid
Density 2.460 g/cm3, liquid;

2.55 g/cm3, trigonal;
3.11–3.146 g/cm3, monoclinic

Melting point 450 °C (842 °F; 723 K) (trigonal)
510 °C (tetrahedral)
Boiling point 1,860 °C (3,380 °F; 2,130 K) ,[1] sublimates at 1500 °C[2]
Solubility in water 1.1 g/100mL (10 °C)
3.3 g/100mL (20 °C)
15.7 100 g/100mL (100 °C)
Solubility partially soluble in methanol
Acidity (pKa) ~ 4
Thermochemistry
Specific
heat capacity
C
66.9 J/mol K
Std molar
entropy
So298
80.8 J/mol K
Std enthalpy of
formation
ΔfHo298
-1254 kJ/mol
Gibbs free energy ΔG -832 kJ/mol
Hazards
MSDS External MSDS
EU classification Repr. Cat. 2
NFPA 704
0
2
1
LD50 3163 mg/kg (oral, rat)
Supplementary data page
Structure and
properties
n, εr, etc.
Thermodynamic
data
Phase behaviour
Solid, liquid, gas
Spectral data UV, IR, NMR, MS
Except where noted otherwise, data are given for materials in their standard state (at 25 °C (77 °F), 100 kPa)
 YesY   YesY/N?)

Boron trioxide (or diboron trioxide) is one of the oxides of boron. It is a white, glassy solid with the formula B2O3. It is almost always found as the vitreous (amorphous) form; however, it can be crystallized after extensive annealing (that is, under prolonged heat). It is known as one of the most difficult compounds to crystallize.

Glassy boron oxide (g-B2O3) is thought to be composed of boroxol rings which are six-membered rings composed of alternating 3-coordinate boron and 2-coordinate oxygen. This view is controversial, however, because no model has ever been made of glassy boron oxide of the correct density containing a large number of six-membered rings. The rings are thought to make a few BO3 triangles, but mostly link (polymerize) into ribbons and sheets.[3][4] The crystalline form (α-B2O3) (see structure in the infobox[5]) is exclusively composed of BO3 triangles. This trigonal, quartz-like network undergoes a coesite-like transformation to monoclinic β-B2O3 at several gigapascals (9.5 GPa).[6]

Preparation

Boron trioxide is produced by treating borax with sulfuric acid in a fusion furnace. At temperatures above 750 °C, the molten boron oxide layer separates out from sodium sulfate. It is then decanted, cooled and obtained in 96–97% purity.[2]

Another method is heating boric acid above ~300 °C. Boric acid will initially decompose into water steam and metaboric acid (HBO2) at around 170 °C, and further heating above 300 °C will produce more steam and boron trioxide. The reactions are:

H3BO3 → HBO2 + H2O
2 HBO2 → B2O3 + H2O

Boric acid goes to anhydrous microcrystalline B2O3 in a heated fluidized bed.[7] Carefully controlled heating rate avoids gumming as water evolves. Molten boron oxide attacks silicates. Internally graphitized tubes via acetylene thermal decomposition are passivated.[8] Can be used for rocket fuel and car fuel

Crystallization of molten α-B2O3 at ambient pressure is strongly kinetically disfavored (compare liquid and crystal densities). Threshold conditions for crystallization of the amorphous solid are 10 kbar and ~200 °C.[9] Its proposed crystal structure in enantiomorphic space groups P31(#144); P32(#145)[10][11] (e.g., γ-glycine) has been revised to enantiomorphic space groups P3121(#152); P3221(#154)[12](e.g., α-quartz).

Boron oxide will also form when Diborane (B2H6) reacts with oxygen in the air or trace amounts of moisture:

2B2H6(g) + 3O2(g) → 2B2O3(s) + 6H2(g)
B2H6(g) + 3H2O(v) → B2O3(s) + 6H2(g)[13]

Applications

See also

References

  1. ^ High temperature corrosion and materials chemistry: proceedings of the Per Kofstad Memorial Symposium. Proceedings of the Electrochemical Society. The Electrochemical Society. 2000. p. 496.  
  2. ^ a b Patnaik, P. (2003). Handbook of Inorganic Chemical Compounds. McGraw-Hill. p. 119.  
  3. ^ Eckert, H. (1992). "Structural characterization of noncrystalline solids and glasses using solid state NMR". Progress in Nuclear Magnetic Resonance Spectroscopy 24 (3): 159–293.  
  4. ^ Hwang, S.-J.; Fernandez, C.; Amoureux, J. P.; Cho, J.; Martin, S. W.; Pruski, M. (1997). "Quantitative study of the short range order in B2O3 and B2S3 by MAS and two-dimensional triple-quantum MAS 11B NMR". Solid State Nuclear Magnetic Resonance 8 (2): 109–121.  
  5. ^ Gurr, G. E.; Montgomery, P. W.; Knutson, C. D.; Gorres, B. T. (1970). "The Crystal Structure of Trigonal Diboron Trioxide". Acta Crystallographica B 26 (7): 906–915.  
  6. ^ Brazhkin, V. V.; Katayama, Y.; Inamura, Y.; Kondrin, M. V.; Lyapin, A. G.; Popova, S. V.; Voloshin, R. N. (2003). under high pressure"3O2"Structural transformations in liquid, crystalline and glassy B. JETP Letters 78 (6): 393–397.  
  7. ^ Kocakuşak, S.; Akçay, K.; Ayok, T.; Koöroğlu, H. J.; Koral, M.; Savaşçi, Ö. T.; Tolun, R. (1996). "Production of anhydrous, crystalline boron oxide in fluidized bed reactor". Chemical Engineering and Processing 35 (4): 311–317.  
  8. ^ Morelock, C. R. (1961). "Research Laboratory Report #61-RL-2672M". General Electric. 
  9. ^ Aziz, M. J.; Nygren, E.; Hays, J. F.; Turnbull, D. (1985). "Crystal Growth Kinetics of Boron Oxide Under Pressure". Journal of Applied Physics 57 (6): 2233.  
  10. ^ Gurr, G. E.; Montgomery, P. W.; Knutson, C. D.; Gorres, B. T. (1970). "The crystal structure of trigonal diboron trioxide". Acta Crystallographica B 26 (7): 906–915.  
  11. ^ Strong, S. L.; Wells, A. F.; Kaplow, R. (1971). "On the crystal structure of B2O3". Acta Crystallographica B 27 (8): 1662–1663.  
  12. ^ Effenberger, H.; Lengauer, C. L.; Parthé, E. (2001). "Trigonal B2O3 with Higher Space-Group Symmetry: Results of a Reevaluation". Monatshefte für Chemie 132 (12): 1515–1517.  
  13. ^ AirProducts (2011). "Diborane Storage & Delivery". 

External links

  • National Pollutant Inventory: Boron and compounds
  • Australian Government information
  • US NIH hazard information. See NIH.
  • Material Safety Data Sheet
  • CDC - NIOSH Pocket Guide to Chemical Hazards - Boron oxide
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.