The Brazilian space program refers to the rocketry and space exploration programs conducted by Brazil from 1961 until the creation of the Brazilian Space Agency in 1994. It had significant capabilities in launch vehicles, launch sites, and satellite manufacturing. It was based at the National Institute for Space Research (INPE), under the Ministry of Science and Technology (MCT). The program was under military control, which hindered its development, as other countries (such as the United States) blocked technological development due to concerns over nuclear proliferation. In 1994, the space program was transferred to civilian control under the Brazilian Space Agency.


In an attempt to build a Satellite Launch Vehicle (Veículo Lançador de Satélite--VLS), Brazil has since 1964 developed a series of sounding (research) rockets, named Sonda I, II, III, and IV. The early Sondas were test-launched from Barreira do Inferno Launch Center, near the city of Natal in the Northeast Region. The Sonda IV rocket was tested successfully on April 28, 1989. Subsequent launches were made from the Alcântara Launch Center (Centro de Lançamento de Alcântara--CLA), in Maranhão, President José Sarney's home state. The CLA, officially dedicated on February 21, 1990, cost more than US$470 million to develop. It is the closest launch center to the equator in the world (2.3 degrees south of the equator), making it attractive for launches of geostationary satellites. For example, because it is so close to the equator it provides a 25 percent fuel savings compared with Kennedy Space Center.

On February 9, 1993, the first satellite developed entirely in Brazil, the Data-Collecting Satellite (Satélite de Coleta de Dados--SCD-1), was launched. The SCD-1, sometimes referred to as the "green" satellite, is used by Brazilian National Institute for Space Research (INPE - Instituto Nacional de Pesquisas Espaciais) agencies. Both the SCD-1 The SCD-2, which was launched October 22, 1998, by a Pegasus rocket (a U.S. rocket), to collect environmental data.

On July 6, 1988, Brazil signed an agreement with China that calls for the joint development (between the INPE and the Chinese Space Agency) of two earth-imaging satellites to be launched by a Long March Chinese rocket from the Shanxi Launching site. Known as the China-Brazil Earth Resources Satellite program (Satélite Sino-Brasileiro de Recursos Terrestres--CBERS), the high-resolution CBERS will collect data from the entire planet and will be used for agriculture, geology, hydrology, and the environment. The Sino-Brazilian agreement was inactive from 1988 through 1991 because of Brazil's lack of funds. In October 1991 and November 1994, Brazil and China signed additional agreements for the construction of the satellites, worth US$150 million. The CBERS-1 was scheduled to be launched in May 1997.

Embratel, a formerly state-controlled communications company in charge of the Brazilian Satellite Communication System (Sistema Brasileiro de Comunicação por Satélites--SBTS), owns and operates a series of satellites that are positioned in geostationary orbit over the equator. Arianespace, a French space and defense partner of France's Aérospatiale group, launched the first two Brasilsat satellites in February 1985 and March 1986.

Until 1994 the military directed most of the space program through the Ministry of Aeronautics, which is in charge of the CTA. Created in 1950, the CTA is involved in research and development for the aerospace programs of the FAB (Brazilian Air Force). In 1965 the FAB created the Space Activities Center (Instituto de Atividades Espaciais--IAE), one of several institutes within the CTA, to develop rockets. Since its creation, the IAE has tested more than 2,000 rockets.

In 1971, a joint civilian-military committee, the Brazilian Commission for Space Activities (Comissão Brasileira de Atividades Espaciais--Cobae), was established and placed under the CSN (National Security Council). Cobae was chaired by the head of the Armed Forces General Staff (Estado-Maior das Forças Armadas--EMFA) and was in charge of the Complete Brazilian Space Mission (Missão Espacial Completa Brasileira--MECB). The MECB was created in 1981 to coordinate launch vehicles, launch sites, and the manufacturing of satellites.

On the civilian side, the MECB is headed by the INPE. Established in 1971, the INPE replaced the National Commission for Space Activities (Comissão Nacional de Atividades Espaciais--CNAE). The INPE is subordinate to the Ministry of Science and Technology and roughly the CTA's counterpart. The INPE develops satellites and conducts space and meteorological research. It has also been developing engines using liquid propellants since 1988, but with mixed results.

Within Brazil's MECB, civilians have been primarily responsible for satellite production, and the armed forces have been in charge of developing launch pads and rockets. Despite this division of labor, the armed forces were the dominant actors in the MECB, at least through 1993. Military officers occupied most of the high-ranking positions in the MECB.

Brazilian Space Agency

In an attempt to place the MECB more firmly in the hands of civilians, Brazil's President Itamar Franco signed a bill on February 10, 1994, creating the Brazilian Space Agency (Agência Espacial Brasileira--AEB). The AEB replaced Cobae, which acted merely as an advisory body and had no staff. The AEB, a semi-autonomous agency, has its own staff and responsibilities for policy implementation. It is led by a civilian, who is under the direct control of the president. The AEB oversees the MECB, but the Ministry of Aeronautics is still in charge of launch facilities and launch vehicles, and the INPE continues to direct the development of satellites. It remains to be seen, therefore, whether the AEB can effectively oversee the various ministries involved in the MECB.

The AEB was created in part to deflect criticism from the United States government, which viewed with alarm the involvement of Brazil's military in the MECB. The United States played a central role in the development of Brazil's MECB, beginning with its financial and technological support for the CTA and the INPE. In 1966 the United States supplied sounding rockets, which were launched subsequently by Brazil. Based on that technology, Brazil later developed larger boosters of its own.

Does it have any relations with NASA? The ties between Brazil and the United States were generally along functional lines within the two governments. The United States National Aeronautics and Space Administration (NASA) worked with the INPE, sharing data, helping to develop and implement scientific experiments, and training the institute's technicians and scientists. Likewise, the United States Air Force worked with Brazil's Ministry of Aeronautics and established a number of data-exchange agreements with the CTA that covered such matters as weather forecasting.

Brazil no longer relies as heavily on the United States for space technology. In 1981 it unveiled the MECB, an ambitious US$1 billion program with the aim of attaining self-sufficiency in space technology. At that time, Brazil committed itself to launching a series of four Brazilian-made satellites (two for weather forecasting and two for terrain photography) from Alcântara.

In further moves away from dependence on the United States, in the 1980s Brazil took steps to become self-sufficient in the production of ammonium perchlorate, an oxidizer for solid fuels. In addition to its indigenous research and development, Brazil now cooperates in its space program with Canada, the European Space Agency (ESA), Russia, France, and especially China. One joint satellite project with China is the China-Brazil Earth Resources Satellite. Brazil is also seeking space cooperation with new partners, such as Israel.

In the mid-1980s through the early 1990s, many United States policy makers were concerned with Brazil's MECB because of the possibility of diverting space-launch technology to a ballistic missile program. Although by mid-1997 Brazil had not produced a ballistic missile, its military had given high priority to the development of several missile systems, including the Piranha missile (MAA-1). Brazil's space-launch program, coupled with its artillery rocket technology, suggests that the country has the potential to develop advanced missiles, including ballistic missiles.

From 1987 to 1994, the United States sought to stifle the development of Brazil's ballistic missile program through the Missile Technology Control Regime (MTCR--see Glossary), formed on April 16, 1987. Given Brazil's advanced nuclear program, the United States was especially concerned that a potential Brazilian ballistic missile could eventually serve as a vehicle for a nuclear warhead. The United States restrictions on space technology to Brazil stalled Brazil's VLS (Satellite Launch Vehicle) program and ballistic missile research and development, strained United States security relations with Brazil, and prompted Brazil to explore closer ties with China, Russia, and various countries in Europe and the Middle East (especially Iraq). In October 1995, for example, Brazil offered Russia the use of its Alcântara base, to launch rockets.

On February 11, 1994, Brazil announced that it would comply with MTCR guidelines. Such compliance would include export controls on Brazilian space and missile goods and technology. Brazil's accession to the MTCR coincided with various attempts by the United States to cooperate in space activities and seemed to signal a new era in space relations. Brazil's application for MTCR membership was accepted in October 1995. Thus, by the end of 1995 Brazil's space capabilities were improving, although they were modest by the standards of countries such as the United States and Russia.

Brazilian Satellites

  • Coverage
  • Coverage
  • Coverage
  • Coverage
  • BrasilSat A2 USA Coverage
  • Band Ku Coverage - Mercosul

See also

External links

  • The National Institute for Space Research (INPE)
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.