World Library  
Flag as Inappropriate
Email this Article

Cd28

Article Id: WHEBN0004427055
Reproduction Date:

Title: Cd28  
Author: World Heritage Encyclopedia
Language: English
Subject: CD134, CD86, Programmed cell death 1, CD15, CD7
Collection:
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Cd28

CD28 molecule

Structure of human CD28.
Available structures
PDB Ortholog search: PDBe, RCSB
Identifiers
Symbols  ; Tp44
External IDs ChEMBL: GeneCards:
RNA expression pattern
Orthologs
Species Human Mouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)
RefSeq (protein)
Location (UCSC)
PubMed search

CD28 (Cluster of Differentiation 28) is one of the proteins expressed on T cells that provide co-stimulatory signals required for T cell activation and survival. T cell stimulation through CD28 in addition to the T-cell receptor (TCR) can provide a potent signal for the production of various interleukins (IL-6 in particular).

CD28 is the receptor for CD80 (B7.1) and CD86 (B7.2) proteins. When activated by Toll-like receptor ligands, the CD80 expression is upregulated in antigen presenting cells (APCs). The CD86 expression on antigen presenting cells is constitutive (expression is independent of environmental factors).

CD28 is the only B7 receptor constitutively expressed on naive T cells. Association of the TCR of a naive T cell with MHC:antigen complex without CD28:B7 interaction results in a T cell that is anergic.

Signaling

CD28 possesses an intracellular domain with several residues that are critical for its effective signaling. The YMNM motif beginning at tyrosine 170 in particular is critical for the recruitment of SH2-domain containing proteins, especially PI3K, Grb2 and Gads. The Y170 residue is important for the induction of Bcl-xL via mTOR and enhancement of IL-2 transcription via PKCθ, but has no effect on proliferation and results a slight reduction in IL-2 production. The N172 residue (as part of the YMNM) is important for the binding of Grb2 and Gads and seems to be able to induce IL-2 mRNA stability but not NF-κB translocation. The induction of NF-κB seems to be much more dependent on the binding of Gads to both the YMNM and the two proline-rich motifs within the molecule. However, mutation of the final amino acid of the motif, M173, which is unable to bind PI3K but is able to bind Grb2 and Gads, gives little NF-κB or IL-2, suggesting that those Grb2 and Gads are unable to compensate for the loss of PI3K. IL-2 transcription appears to have two stages; a Y170-dependent, PI3K-dependent initial phase which allows transcription and a PI3K-independent second phase which is dependent on formation of an immune synapse, which results in enhancement of IL-2 mRNA stability. Both are required for full production of IL-2.

CD28 also contains two proline-rich motifs that are able to bind SH3-containing proteins. Itk and Tec are able to bind to the N-terminal of these two motifs which immediately succeeds the Y170 YMNM; Lck binds the C-terminal. Both Itk and Lck are able to phosphorylate the tyrosine residues which then allow binding of SH2 containing proteins to CD28. Binding of Tec to CD28 enhances IL-2 production, dependent on binding of its SH3 and PH domains to CD28 and PIP3 respectively. The C-terminal proline-rich motif in CD28 is important for bringing Lck and lipid rafts into the immune synapse via filamin-A. Mutation of the two prolines within the C-terminal motif results in reduced proliferation and IL-2 production but normal induction of Bcl-xL.

Structure

The first structure of CD28 was obtained in 2005 by the T-cell biology group at the University of Oxford.[1]

CD28 as a drug target

The drug superagonist of CD28. Unfortunately it is often ignored that the same receptors also exist on cells other than lymphocytes. CD28 has also been found to stimulate eosinophil granulocytes where its ligation with anti-CD28 leads to the release of IL-2, IL4, IL-13 and IFN-γ.[2][3]

Interactions

CD28 has been shown to interact with PIK3R1,[4] Grb2[5][6] and GRAP2.[7]

See also

References

  1. ^ Evans EJ, Esnouf RM, Manso-Sancho R, Gilbert RJ, James JR, Yu C, Fennelly JA, Vowles C, Hanke T, Walse B, Hünig T, Sørensen P, Stuart DI, Davis SJ (March 2005). "Crystal structure of a soluble CD28-Fab complex". Nat. Immunol. 6 (3): 271–9.  
  2. ^ Woerly G, Roger N, Loiseau S, Dombrowicz D, Capron A, Capron M (1999). "Expression of Cd28 and Cd86 by Human Eosinophils and Role in the Secretion of Type 1 Cytokines (Interleukin 2 and Interferon γ): Inhibition by Immunoglobulin a Complexes". J Exp Med 190 (4): 487–95.  
  3. ^ Woerly G, Lacy P, Younes A, Roger N, Loiseau S, Moqbel R, Capron M (2002). "Human eosinophils express and release IL-13 following CD28-dependent activation". J Leukoc Biol 72 (4): 769–79.  
  4. ^ Pagès, F; Ragueneau M; Klasen S; Battifora M; Couez D; Sweet R; Truneh A; Ward S G; Olive D (April 1996). "Two distinct intracytoplasmic regions of the T-cell adhesion molecule CD28 participate in phosphatidylinositol 3-kinase association". J. Biol. Chem. (UNITED STATES) 271 (16): 9403–9.  
  5. ^ Okkenhaug, K; Rottapel R (August 1998). "Grb2 forms an inducible protein complex with CD28 through a Src homology 3 domain-proline interaction". J. Biol. Chem. (UNITED STATES) 273 (33): 21194–202.  
  6. ^ Nunès, J A; Truneh A; Olive D; Cantrell D A (January 1996). "Signal transduction by CD28 costimulatory receptor on T cells. B7-1 and B7-2 regulation of tyrosine kinase adaptor molecules". J. Biol. Chem. (UNITED STATES) 271 (3): 1591–8.  
  7. ^ Ellis, J H; Ashman C; Burden M N; Kilpatrick K E; Morse M A; Hamblin P A (June 2000). "GRID: a novel Grb-2-related adapter protein that interacts with the activated T cell costimulatory receptor CD28". J. Immunol. (UNITED STATES) 164 (11): 5805–14.  

Further reading


External links

  • Mouse CD Antigen Chart
  • Human CD Antigen Chart
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.