#jsDisabledContent { display:none; } My Account | Register | Help

Cantellated 16-cell

Article Id: WHEBN0006397551
Reproduction Date:

 Title: Cantellated 16-cell Author: World Heritage Encyclopedia Language: English Subject: Collection: Publisher: World Heritage Encyclopedia Publication Date:

Cantellated 16-cell

 Rectified 24-cell Schlegel diagram8 of 24 cuboctahedral cells shown Type Uniform polychoron Schläfli symbol r{3,4,3}rr{3,3,4}r{31,1,1} Coxeter-Dynkin diagrams Cells 48 24 Faces 240 96 {3}144 {4} Edges 288 Vertices 96 Vertex figure Triangular prism Symmetry groups F4 [3,4,3], order 1152B4 [3,3,4], order 384D4 [31,1,1], order 192 Properties convex, edge-transitive Uniform index 22 23 24

In geometry, the rectified 24-cell is a uniform 4-dimensional polytope (or uniform polychoron), which is bounded by 48 cells: 24 cubes, and 24 cuboctahedra. It can be obtained by reducing the icositetrachoron's cells to cubes or cuboctahedra.

It can also be considered a cantellated 16-cell with the lower symmetries B4 = [3,3,4]. B4 would lead to a bicoloring of the cuboctahedral cells into 8 and 16 each. It is also called a runcicantellated demitesseract in a D4 symmetry, giving 3 colors of cells, 8 for each.

Cartesian coordinates

A rectified 24-cell having an edge length of √2 has vertices given by all permutations and sign permutations of the following Cartesian coordinates:

(0,1,1,2) [4!/2!×23 = 96 vertices]

The dual configuration with edge length 2 has all coordinate and sign permutations of:

(0,2,2,2) [4×23 = 32 vertices]
(1,1,1,3) [4×24 = 64 vertices]

Images

Stereographic projection

Center of stereographic projection
with 96 triangular faces blue

Symmetry constructions

There are three different symmetry constructions of this polytope. The lowest $\left\{D\right\}_3$ construction can be doubled into $\left\{C\right\}_3$ by adding a mirror that maps the bifurcating nodes onto each other. $\left\{D\right\}_3$ can be mapped up to $\left\{F\right\}_3$ symmetry by adding two mirror that map all three end nodes together.

The vertex figure is a triangular prism, containing two cubes and three cuboctahedra. The three symmetries can be seen with 3 colored cuboctahedra in the lowest $\left\{D\right\}_3$ construction, and two colors (1:2 ratio) in $\left\{C\right\}_3$, and all identical cuboctahedra in $\left\{F\right\}_3$.

Coxeter group $\left\{F\right\}_3$ = [3,4,3] $\left\{C\right\}_3$ = [4,3,3] $\left\{D\right\}_3$ = [3,31,1]
Order 1152 384 192
Full
symmetry
group
[3,4,3] [4,3,3] <[3,31,1]> = [4,3,3]
[3[31,1,1]] = [3,4,3]
Coxeter-Dynkin diagram
Facets 3:
2:
2,2:
2:
1,1,1:
2:
Vertex figure

Related uniform polytopes

The rectified 24-cell can also be derived as a cantellated 16-cell:

Name tesseract rectified
tesseract
truncated
tesseract
cantellated
tesseract
runcinated
tesseract
bitruncated
tesseract
cantitruncated
tesseract
runcitruncated
tesseract
omnitruncated
tesseract
Coxeter-Dynkin
diagram
Schläfli
symbol
{4,3,3} t1{4,3,3}
r{4,3,3}
t0,1{4,3,3}
t{4,3,3}
t0,2{4,3,3}
rr{4,3,3}
t0,3{4,3,3} t1,2{4,3,3}
2t{4,3,3}
t0,1,2{4,3,3}
tr{4,3,3}
t0,1,3{4,3,3} t0,1,2,3{4,3,3}
Schlegel
diagram
B4 Coxeter plane graph

Name 16-cell rectified
16-cell
truncated
16-cell
cantellated
16-cell
runcinated
16-cell
bitruncated
16-cell
cantitruncated
16-cell
runcitruncated
16-cell
omnitruncated
16-cell
Coxeter-Dynkin
diagram
Schläfli
symbol
{3,3,4} t1{3,3,4}
r{3,3,4}
t0,1{3,3,4}
t{3,3,4}
t0,2{3,3,4}
rr{3,3,4}
t0,3{3,3,4} t1,2{3,3,4}
2t{3,3,4}
t0,1,2{3,3,4}
tr{3,3,4}
t0,1,3{3,3,4} t0,1,2,3{3,3,4}
Schlegel
diagram
B4 Coxeter plane graph

References

• T. Gosset: On the Regular and Semi-Regular Figures in Space of n Dimensions, Messenger of Mathematics, Macmillan, 1900
• H.S.M. Coxeter:
• Coxeter, Regular Polytopes, (3rd edition, 1973), Dover edition, ISBN 0-486-61480-8, p. 296, Table I (iii): Regular Polytopes, three regular polytopes in n-dimensions (n≥5)
• H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973, p. 296, Table I (iii): Regular Polytopes, three regular polytopes in n-dimensions (n≥5)
• Kaleidoscopes: Selected Writings of H.S.M. Coxeter, editied by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, [1]
• (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
• (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
• (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
• John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 26. pp. 409: Hemicubes: 1n1)
• Norman Johnson Uniform Polytopes, Manuscript (1991)
• N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. (1966)
• George Olshevsky.
• George Olshevsky.
• George Olshevsky.
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.

Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.