World Library  
Flag as Inappropriate
Email this Article

Cardiorespiratory fitness

Article Id: WHEBN0003115848
Reproduction Date:

Title: Cardiorespiratory fitness  
Author: World Heritage Encyclopedia
Language: English
Subject: Ekblom-Bak test, Respiratory physiology, COSMED, Ulegyria, Reference desk/Archives/Science/2015 August 29
Collection:
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Cardiorespiratory fitness

Cardiorespiratory refers to the ability of the circulatory and respiratory systems to supply oxygen to skeletal muscles during sustained physical activity. Regular exercise makes these systems more efficient by enlarging the heart muscle, enabling more blood to be pumped with each stroke, and increasing the number of small arteries in trained skeletal muscles, which supply more blood to working muscles. Exercise improves the respiratory system by increasing the amount of oxygen that is inhaled and distributed to body tissue.[1]

There are many benefits of cardiorespiratory fitness. It can reduce the risk of heart disease, lung cancer, type 2 diabetes, stroke, and other diseases. Cardiorespiratory fitness helps improve lung and heart condition, and increases feelings of wellbeing.[1]

The American College of Sports Medicine recommends aerobic exercise 3–5 times per week for 30–60 minutes per session, at a moderate intensity, that maintains the heart rate between 65–85% of the maximum heart rate.[2]

Contents

  • Cardiovascular system 1
  • Respiratory system adaptations 2
  • Temperature regulation 3
  • See also 4
  • References 5
  • External links 6

Cardiovascular system

The cardiovascular system is responsible for a vast set of adaptations in the body throughout exercise. It must immediately respond to changes in cardiac output, blood flow, and blood pressure. Cardiac output is defined as the product of heart rate and stroke volume which represents the volume of blood being pumped by the heart each minute. Cardiac output increases during physical activity due to an increase in both the heart rate and stroke volume.[3] At the beginning of exercise, the cardiovascular adaptations are very rapid: “Within a second after muscular contraction, there is a withdrawal of vagal outflow to the heart, which is followed by an increase in sympathetic stimulation of the heart. This results in an increase in cardiac output to ensure that blood flow to the muscle is matched to the metabolic needs”.[4] Both heart rate and stroke volume vary directly with the intensity of the exercise performed and many improvements can be made through continuous training.

Another important issue is the regulation of blood flow during exercise. Blood flow must increase in order to provide the working muscle with more oxygenated blood which can be accomplished through neural and chemical regulation. Blood vessels are under sympathetic tone, therefore the release of noradrenaline and adrenaline will cause vasoconstriction of non-essential tissues such as the liver, intestines, and kidneys, and decrease neurotransmitter release to the active muscles promoting vasodilatation. Also, chemical factors such as a decrease in oxygen concentration and an increase in carbon dioxide or lactic acid concentration in the blood promote vasodilatation to increase blood flow.[5] As a result of increased vascular resistance, blood pressure rises throughout exercise and stimulates baroreceptors in the carotid arteries and aortic arch. “These pressure receptors are important since they regulate arterial blood pressure around an elevated systemic pressure during exercise”.[4]

Respiratory system adaptations

Although all of the described adaptations in the body to maintain homeostatic balance during exercise are very important, the most essential factor is the involvement of the respiratory system. The respiratory system allows for the proper exchange and transport of gases to and from the lungs while being able to control the ventilation rate through neural and chemical impulses. In addition, the body is able to efficiently use the three energy systems which include the phosphagen system, the glycolytic system, and the oxidative system.[3]

Temperature regulation

In most cases, as the body is exposed to physical activity, the core temperature of the body tends to rise as heat gain becomes larger than the amount of heat lost. “The factors that contribute to heat gain during exercise include anything that stimulate metabolic rate, anything from the external environment that causes heat gain, and the ability of the body to dissipate heat under any given set of circumstances”.[3] In response to an increase in core temperature, there are a variety of factors which adapt in order to help restore heat balance. The main physiological response to an increase in body temperature is mediated by the thermal regulatory center located in the hypothalamus of the brain which connects to thermal receptors and effectors. There are numerous thermal effectors including sweat glands, smooth muscles of blood vessels, some endocrine glands, and skeletal muscle. With an increase in the core temperature, the thermal regulatory center will stimulate the arterioles supplying blood to the skin to dilate along with the release of sweat on the skin surface to reduce temperature through evaporation.[3] In addition to the involuntary regulation of temperature, the hypothalamus is able to communicate with the cerebral cortex to initiate voluntary control such as removing clothing or drinking cold water. With all regulations taken into account, the body is able to maintain core temperature within about two or three degrees Celsius during exercise.[4]

See also

References

  1. ^ a b
  2. ^
  3. ^ a b c d
  4. ^ a b c
  5. ^

External links

  • Cardiorespiratory Fitness
  • ACSM Fitness Guidelines
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.