World Library  
Flag as Inappropriate
Email this Article

Carrier-to-receiver noise density

Article Id: WHEBN0000040850
Reproduction Date:

Title: Carrier-to-receiver noise density  
Author: World Heritage Encyclopedia
Language: English
Subject: Signal-to-interference ratio, Noise, List of noise topics, Effective number of bits, Simulation noise
Collection: Noise
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Carrier-to-receiver noise density

In satellite communications, carrier-to-receiver noise density (C/kT) is the ratio of the received carrier power to the receiver noise power density. It tells us whether it's possible to lock on to the carrier and if the information encoded in the signal can be retrieved, given the amount of noise present in the received signal. The carrier-to-receiver noise density ratio is usually expressed in dBHz.

The carrier-to-receiver noise density is given by

\frac{C}{k T},

where C is the received carrier power in watts, k is Boltzmann's constant in joules per kelvin, and T is the receiver system noise temperature in kelvins.

The receiver noise power density, kT, is the receiver noise power per hertz.

 This article incorporates public domain material from the General Services Administration document "Federal Standard 1037C" (in support of MIL-STD-188).

See also

References

External links


This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.