Cuticular

A cuticle /ˈkjuːtɪkəl/, or cuticula, is a term used for any of a variety of tough but flexible, non-mineral outer coverings of an organism, or parts of an organism, that provide protection. Various types of "cuticles" are non-homologous; differing in their origin, structure, function, and chemical composition.

Human anatomy

In human anatomy, cuticle (sometimes confused with eponychium) refers to several structures. It refers to the layers of epidermal cells or keratinocytes that produce the horn protein keratin, and also to the superficial layer of overlapping cells covering the hair shaft (cuticula pili) that locks the hair into its follicle (See also Cuticle (hair)).

Invertebrate zoology

In zoology, the invertebrate cuticle or cuticula is a multi-layered structure outside the epidermis of many invertebrates, notably roundworms[1] and arthropods, in which it forms an exoskeleton (see arthropod exoskeleton).

The main structural components of the nematode cuticle are proteins, highly cross-linked collagens and specialised insoluble proteins known as "cuticlins", together with glycoproteins and lipids.[2]

The main structural component of arthropod cuticle is chitin, a polysaccharide composed of N-acetylglucosamine units, together with proteins, lipids, and catecholamines The proteins and chitin are cross-linked by catecholamines such as N-acetyldopamine, contributing to their rigidity. The rigidity is a function of the types of proteins and the quantity of chitin and catecholamines. The more acidic the protein is, the softer the cuticle. It is believed that the epidermal cells and hemocytes (cells in the hemolymph) produce protein and also monitors the timing and amount of protein to be incorporated into the cuticle.[3]

Botany

Main article: Plant cuticle


In botany, plant cuticles are protective, hydrophobic, waxy coverings produced by the epidermal cells of leaves, young shoots and all other aerial plant organs. Cuticles minimize water loss and effectively reduce pathogen entry due to their waxy secretion.

The main structural components of plant cuticles are the unique polymers cutin and/or cutan, impregnated with wax.

The cuticles of plants function as permeability barriers for water and water-soluble materials. The cuticle both prevents plant surfaces from becoming wet and helps to prevent plants from drying out. Xerophytic plants such as cactus have very thick cuticles to help them survive in their arid climates. Plants that live in range of sea's spray also may have thicker cuticles that protect them from the toxic effects of salt.

Some plants, particularly those adapted to life in damp or aquatic environments, have an almost magical resistance to wetting. A well-known example is the Sacred Lotus.[4] This spectacular adaptation is not purely the physical and chemical effect of a waxy coating however; it depends largely on the microscopic shape of the surface. When a hydrophobic surface is sculpted into microscopic, regular, elevated areas, sometimes in fractal patterns, too high and too closely spaced for the surface tension of the liquid to permit any flow into the space between the plateaus, then the area of contact between liquid and solid surfaces may be reduced to less than a tenth of what a continuous surface might permit.[5] The effect is to reduce wetting of the surface spectacularly.[6]

Mycology

Main article: Pileipellis

"Cuticle" is one term used for the outer layer of tissue of a mushroom's basidiocarp or "fruit body". The alternative term "pileipellis", Latin for "skin" of a "cap" (meaning "mushroom")[7] might be technically preferable, but is perhaps too cumbersome for popular use. It is the part removed in "peeling" mushrooms. On the other hand, some morphological terminology in mycology makes finer distinctions, such as described in the article on the "pileipellis". Be that as it may, the pileipellis (or "peel") is distinct from the trama, the inner fleshy tissue of a mushroom or similar fruiting body, and also from the spore-bearing tissue layer, the hymenium.

References

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.