World Library  
Flag as Inappropriate
Email this Article

Data Structures

Article Id: WHEBN0000426810
Reproduction Date:

Title: Data Structures  
Author: World Heritage Encyclopedia
Language: English
Subject: Timothy M. Chan, Bachelor of Computer Science, Athanasios Tsakalidis, AP Computer Science
Collection:
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Data Structures

In computer science, a data structure is a particular way of storing and organizing data in a computer so that it can be used efficiently.[1][2]

Different kinds of data structures are suited to different kinds of applications, and some are highly specialized to specific tasks. For example, B-trees are particularly well-suited for implementation of databases, while compiler implementations usually use hash tables to look up identifiers.

Data structures provide a means to manage large amounts of data efficiently, such as large databases and internet indexing services. Usually, efficient data structures are a key to designing efficient algorithms. Some formal design methods and programming languages emphasize data structures, rather than algorithms, as the key organizing factor in software design. Storing and retrieving can be carried out on data stored in both main memory and in secondary memory.

Overview

  • An array stores a number of elements in a specific order. They are accessed using an integer to specify which element is required (although the elements may be of almost any type). Arrays may be fixed-length or expandable.
  • Records (also called tuples or structs) are among the simplest data structures. A record is a value that contains other values, typically in fixed number and sequence and typically indexed by names. The elements of records are usually called fields or members.
  • A hash table (also called a dictionary or map) is a more flexible variation on a record, in which name-value pairs can be added and deleted freely.
  • A union type specifies which of a number of permitted primitive types may be stored in its instances, e.g. "float or long integer". Contrast with a record, which could be defined to contain a float and an integer; whereas, in a union, there is only one value at a time.
  • A tagged union (also called a variant, variant record, discriminated union, or disjoint union) contains an additional field indicating its current type, for enhanced type safety.
  • A set is an abstract data structure that can store specific values, without any particular order, and with no repeated values. Values themselves are not retrieved from sets, rather one tests a value for membership to obtain a boolean "in" or "not in".
  • Graphs and trees are linked abstract data structures composed of nodes. Each node contains a value and also one or more pointers to other nodes. Graphs can be used to represent networks, while trees are generally used for sorting and searching, having their nodes arranged in some relative order based on their values.
  • An object contains data fields, like a record, and also contains program code fragments for accessing or modifying those fields. Data structures not containing code, like those above, are called plain old data structures.

Many others are possible, but they tend to be further variations and compounds of the above.

Basic principles

Data structures are generally based on the ability of a computer to fetch and store data at any place in its memory, specified by an address—a bit string that can be itself stored in memory and manipulated by the program. Thus the record and array data structures are based on computing the addresses of data items with arithmetic operations; while the linked data structures are based on storing addresses of data items within the structure itself. Many data structures use both principles, sometimes combined in non-trivial ways (as in XOR linking).

The implementation of a data structure usually requires writing a set of procedures that create and manipulate instances of that structure. The efficiency of a data structure cannot be analyzed separately from those operations. This observation motivates the theoretical concept of an abstract data type, a data structure that is defined indirectly by the operations that may be performed on it, and the mathematical properties of those operations (including their space and time cost).

Language support

Most assembly languages and some low-level languages, such as BCPL (Basic Combined Programming Language), lack support for data structures. Many high-level programming languages and some higher-level assembly languages, such as MASM, on the other hand, have special syntax or other built-in support for certain data structures, such as vectors (one-dimensional arrays) in the C language or multi-dimensional arrays in Pascal.

Most programming languages feature some sort of library mechanism that allows data structure implementations to be reused by different programs. Modern languages usually come with standard libraries that implement the most common data structures. Examples are the C++ Standard Template Library, the Java Collections Framework, and Microsoft's .NET Framework.

Modern languages also generally support modular programming, the separation between the interface of a library module and its implementation. Some provide opaque data types that allow clients to hide implementation details. Object-oriented programming languages, such as C++, Java and Smalltalk may use classes for this purpose.

Many known data structures have concurrent versions that allow multiple computing threads to access the data structure simultaneously.

See also

References

Further reading

External links

  • UC Berkeley video course on data structures
  • Dictionary of Algorithms and Data Structures
  • Data structures course
  • An Examination of Data Structures from .NET perspective

Template:Data model

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.