World Library  
Flag as Inappropriate
Email this Article

Desirudin

Article Id: WHEBN0010629450
Reproduction Date:

Title: Desirudin  
Author: World Heritage Encyclopedia
Language: English
Subject: ATC code B01, Direct thrombin inhibitor
Collection:
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Desirudin

Hirudin
crystallographic analysis at 3.0-angstroms resolution of the binding to human thrombin of four active site-directed inhibitors
Identifiers
Symbol Hirudin
Pfam InterPro IPR000429
SCOP SUPERFAMILY 4htc

Hirudin is a naturally occurring peptide in the salivary glands of medicinal leeches (such as Hirudo medicinalis) that has a blood anticoagulant property. This is fundamental for the leeches’ alimentary habit of hematophagy, since it keeps the blood flowing after the initial phlebotomy performed by the worm on the host’s skin.

Structure

During his years in Birmingham and Edinburgh, John Berry Haycraft had been actively engaged in research and published papers on the coagulation of blood, and in 1884, he discovered that the leech secreted a powerful anticoagulant, which he named hirudin, although it was not isolated until the 1950s, nor its structure fully determined until 1976. Full length hirudin is made up of 65 amino acids. These amino acids are organised into a compact N-terminal domain containing three disulfide bonds and a C-terminal domain that is completely disordered when the protein is un-complexed in solution.[2][3] Amino acid residues 1-3 form a parallel beta- strand with residues 214-217 of thrombin, the nitrogen atom of residue 1 making a hydrogen bond with the Ser-195 O gamma atom of the catalytic site. The C-terminal domain makes numerous electrostatic interactions with an anion-binding exosite of thrombin, while the last five residues are in a helical loop that forms many hydrophobic contacts.[4] Natural hirudin contains a mixture of various isoforms of the protein. However, recombinant techniques can be used to produce homogeneous preparations of hirudin.[5]

Biological activity

A key event in the final stages of blood coagulation is the conversion of fibrinogen into fibrin by the serine protease enzyme thrombin.[6] Thrombin is produced from prothrombin, by the action of an enzyme, prothrombinase (Factor Xa along with Factor Va as a cofactor), in the final states of coagulation. Fibrin is then cross linked by factor XIII (Fibrin Stabilizing Factor) to form a blood clot. The principal inhibitor of thrombin in normal blood circulation is antithrombin.[5] Similar to antithrombin III, the anticoagulatant activity of hirudin is based on its ability to inhibit the procoagulant activity of thrombin.

Hirudin is the most potent natural inhibitor of thrombin. Unlike antithrombin, hirudin binds to and inhibits only the activity of thrombin, with a specific activity on fibrinogen.[5] Therefore, hirudin prevents or dissolves the formation of clots and thrombi (i.e., it has a thrombolytic activity), and has therapeutic value in blood coagulation disorders, in the treatment of skin hematomas and of superficial varicose veins, either as an injectable or a topical application cream. In some aspects, hirudin has advantages over more commonly used anticoagulants and thrombolytics, such as heparin, as it does not interfere with the biological activity of other serum proteins, and can also act on complexed thrombin.

It is difficult to extract large amounts of hirudin from natural sources, so a method for producing and purifying this protein using recombinant biotechnology has been developed. This has led to the development and marketing of a number of hirudin-based anticoagulant pharmaceutical products, such as lepirudin (Refludan), hirudin derived from Hansenula (Thrombexx, Extrauma) and desirudin (Revasc/Iprivask). Several other direct thrombin inhibitors are derived chemically from hirudin.

See also

  • Hirudotherapy
  • Discovery and Development of Direct Thrombin Inhibitors

References

External links

  • AgroMedic - Leech Farming,Medicinal Leeches,Malaysia Leeches(Hirudinaria Manillensis)
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.