Differential Fault Analysis

Differential fault analysis is a type of side channel attack in the field of cryptography, specifically cryptanalysis. The principle is to induce faults—unexpected environmental conditions—into cryptographic implementations, to reveal their internal states.

For example, a smartcard containing an embedded processor might be subjected to high temperature, unsupported supply voltage or current, excessively high overclocking, strong electric or magnetic fields, or even ionizing radiation to influence the operation of the processor. The processor may begin to output incorrect results due to physical data corruption, which may help a cryptanalyst deduce the instructions that the processor is running, or what its internal data state is.[1][2]

For DES and Triple DES, about 200 single-flipped bits are necessary to obtain a secret key.[3] DFA was also applied successfully to the AES cipher.[4]

Many countermeasures have been proposed to defend from this attack. Most of them are based on error detection schemes.[5]

References


This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.