World Library  
Flag as Inappropriate
Email this Article

Edge of space

Article Id: WHEBN0000740776
Reproduction Date:

Title: Edge of space  
Author: World Heritage Encyclopedia
Language: English
Subject: Astronaut, Atmosphere, James McDivitt, Astronaut Badge
Collection:
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Edge of space

"Edge of space" redirects here. For the high-altitude region of Earth's atmosphere, see near space. For the boundary of the universe, see observable universe.


The Kármán line, or Karman line, lies at an altitude of 100 kilometres (62 mi) above the Earth's sea level, and commonly represents the boundary between the Earth's atmosphere and outer space.[2] This definition is accepted by the Fédération Aéronautique Internationale (FAI), which is an international standard setting and record-keeping body for aeronautics and astronautics.

The line is named for Theodore von Kármán, (1881–1963) a Hungarian-American engineer and physicist. He was active primarily in aeronautics and astronautics. He was the first to calculate that around this altitude, the atmosphere becomes too thin to support aeronautical flight, because a vehicle at this altitude would have to travel faster than orbital velocity to derive sufficient aerodynamic lift to support itself (neglecting centrifugal force).[3] There is an abrupt increase in atmospheric temperature and interaction with solar radiation just below the line, which places the line within the greater thermosphere.

Definition

An atmosphere does not abruptly end at any given height, but becomes progressively thinner with altitude. Also, depending on how the various layers that make up the space around the Earth are defined (and depending on whether these layers are considered part of the actual atmosphere), the definition of the edge of space could vary considerably: If one were to consider the thermosphere and exosphere part of the atmosphere and not of space, one might have to extend the boundary to space to at least 10,000 km (6,200 mi) above sea level. The Kármán line thus is an arbitrary definition based on the following considerations:

An aeroplane only stays in the sky if it is constantly traveling forward relative to the air (airspeed is not dependent on speed relative to ground), so that the wings can generate lift. The thinner the air, the faster the plane has to go to generate enough lift to stay up.

If the lift coefficient for a wing at a specified angle of attack is known (or estimated using a method such as thin-airfoil theory), then the lift produced for specific flow conditions can be determined using the following equation

L = \tfrac12\rho v^2 A C_L

where

L is lift force
ρ is air density
v is speed relative to the air
A is wing area,
CL is the lift coefficient at the desired angle of attack, Mach number, and Reynolds number.

Lift (L) generated is directly proportional to the air density (ρ). All other factors remaining unchanged, true airspeed (v) must increase to compensate for less air density (ρ) at higher altitudes.

An orbiting spacecraft only stays in the sky if the centrifugal component of its movement around the Earth is enough to balance the downward pull of gravity. If it goes slower, the pull of gravity gradually makes its altitude decrease. The required speed is called orbital velocity, and it varies with the height of the orbit. For the International Space Station, or a space shuttle in low Earth orbit, the orbital velocity is about 27,000 km per hour (17,000 miles per hour).

For an aeroplane flying higher and higher, the increasingly thin air provides less and less lift, requiring increasingly higher speed to create enough lift to hold the aeroplane up. It eventually reaches an altitude where it must fly so fast to generate lift that it reaches orbital velocity. The Kármán line is the altitude where the speed necessary to aerodynamically support the aeroplane's full weight equals orbital velocity (assuming wing loading of a typical aeroplane). In practice, supporting full weight wouldn't be necessary to maintain altitude because the curvature of the Earth adds centrifugal lift as the aeroplane reaches orbital speed. However, the Karman line definition ignores this effect because orbital velocity is implicitly sufficient to maintain any altitude regardless of atmospheric density. The Karman line is therefore the highest altitude at which orbital speed provides sufficient aerodynamic lift to fly in a straight line that doesn't follow the curvature of the Earth's surface.

When studying aeronautics and astronautics in the 1950s, Kármán calculated that above an altitude of roughly 100 km (62 mi), a vehicle would have to fly faster than orbital velocity to derive sufficient aerodynamic lift from the atmosphere to support itself. At this altitude, the air density is about 1/2200000 the density on the surface.[4] At the Karman line, the air density ρ is such that

L = \tfrac12\rho v_0^2 A C_L = mg

where

v0 is orbital velocity
m is mass of the aircraft
g is acceleration due to gravity.

Although the calculated altitude was not exactly 100 km, Kármán proposed that 100 km be the designated boundary to space, since the round number is more memorable, and the calculated altitude varies minutely as certain parameters are varied. An international committee recommended the 100 km line to the FAI, and upon adoption, it became widely accepted as the boundary to space for many purposes.[5] However, there is still no international legal definition of the demarcation between a country's air space and outer space.[6]

Another hurdle to strictly defining the boundary to space is the dynamic nature of Earth's atmosphere. For example, at an altitude of 1,000 km (620 mi), the atmosphere's density can vary by a factor of five, depending on the time of day, time of year, AP magnetic index, and recent solar flux.

The FAI uses the Kármán line to define the boundary between aeronautics and astronautics:[7]

  • Aeronautics — For FAI purposes, aerial activity, including all air sports, within 100 kilometres of Earth's surface.
  • Astronautics — For FAI purposes, activity more than 100 kilometres above Earth's surface.

Interpretations of the definition

Some people (including the FAI in some of their publications) also use the expression "edge of space" to refer to a region below the conventional 100 km boundary to space, which is often meant to include substantially lower regions as well. Thus, certain balloon or airplane flights might be described as "reaching the edge of space". In such statements, "reaching the edge of space" merely refers to going higher than average aeronautical vehicles commonly would.[8][9]

Alternatives to the definition

Although the United States does not officially define a boundary of space, the U.S. definition of an astronaut, which is still held today, is a person who has flown more than 50 miles (~80 km) above mean sea level. (This is approximately the line between the mesosphere and the thermosphere.) This definition of an astronaut had been somewhat controversial, due to differing definitions between the United States military and NASA.[8]

In 2005, three veteran NASA X-15 pilots (John B. McKay, Bill Dana and Joseph Albert Walker) were retroactively (two posthumously) awarded their astronaut wings, as they had flown between 90 and 108 km in the 1960s, but at the time had not been recognized as astronauts.[8]

International law defines the lower boundary of space as the lowest perigee attainable by an orbiting space vehicle, but does not specify an altitude. Due to atmospheric drag, the lowest altitude at which an object in a circular orbit can complete at least one full revolution without propulsion is approximately 150 km (93 mi), while an object can maintain an elliptical orbit with perigee as low as 129 km (80 mi) with propulsion.[10]

See also

  • V-2 rocket - the first human-built object to cross the Kármán line

References

External links

  • Article on the Kármán line at the FAI website
  • Layers of the Atmosphere – NOAA
  • The Kármán Line music video featuring NASA footage
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.