World Library  
Flag as Inappropriate
Email this Article

Entropy encoding

Article Id: WHEBN0000046680
Reproduction Date:

Title: Entropy encoding  
Author: World Heritage Encyclopedia
Language: English
Subject: Arithmetic coding, Huffman coding, Golomb coding, Motion compensation, Image compression
Collection: Entropy and Information, Lossless Compression Algorithms
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Entropy encoding

In information theory an entropy encoding is a lossless data compression scheme that is independent of the specific characteristics of the medium.

One of the main types of entropy coding creates and assigns a unique prefix-free code to each unique symbol that occurs in the input. These entropy encoders then compress data by replacing each fixed-length input symbol with the corresponding variable-length prefix-free output codeword. The length of each codeword is approximately proportional to the negative logarithm of the probability. Therefore, the most common symbols use the shortest codes.

According to Shannon's source coding theorem, the optimal code length for a symbol is −logbP, where b is the number of symbols used to make output codes and P is the probability of the input symbol.

Two of the most common entropy encoding techniques are Huffman coding and arithmetic coding. If the approximate entropy characteristics of a data stream are known in advance (especially for signal compression), a simpler static code may be useful. These static codes include universal codes (such as Elias gamma coding or Fibonacci coding) and Golomb codes (such as unary coding or Rice coding).

Entropy as a measure of similarity

Besides using entropy encoding as a way to compress digital data, an entropy encoder can also be used to measure the amount of similarity between streams of data and already existing classes of data. This is done by generating an entropy coder/compressor for each class of data; unknown data is then classified by feeding the uncompressed data to each compressor and seeing which compressor yields the highest compression. The coder with the best compression is probably the coder trained on the data that was most similar to the unknown data.

External links

  • Information Theory, Inference, and Learning Algorithms, by David MacKay (2003), gives an introduction to Shannon theory and data compression, including the Huffman coding and arithmetic coding.
  • Source Coding, by T. Wiegand and H. Schwarz (2011).
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.