World Library  
Flag as Inappropriate
Email this Article

Environmental impact of the oil shale industry

 

Environmental impact of the oil shale industry

Kiviõli Oil Shale Processing & Chemicals Plant in Ida-Virumaa, Estonia

Environmental impact of the oil shale industry includes the consideration of issues such as land use, waste management, and water and air pollution caused by the extraction and processing of oil shale. Surface mining of oil shale deposits causes the usual environmental impacts of open-pit mining. In addition, the combustion and thermal processing generate waste material, which must be disposed of, and harmful atmospheric emissions, including carbon dioxide, a major greenhouse gas. Experimental in-situ conversion processes and carbon capture and storage technologies may reduce some of these concerns in future, but may raise others, such as the pollution of groundwater.[1][2]

Contents

  • Surface mining and retorting 1
    • Land use and waste management 1.1
    • Water management 1.2
    • Air pollution management 1.3
    • Greenhouse gas emissions 1.4
  • In-situ processing 2
  • See also 3
  • References 4
  • External links and further reading 5

Surface mining and retorting

Land use and waste management

Surface mining and in-situ processing requires extensive land use. Mining, processing and waste disposal require land to be withdrawn from traditional uses, and therefore should avoid high density population areas.[3] Oil shale mining reduces the original ecosystem diversity with habitats supporting a variety of plants and animals. After mining the land has to be reclaimed. However, this process takes time and cannot necessarily re-establish the original biodiversity.[3][4] The impact of sub-surface mining on the surroundings will be less than for open pit mines. However, sub-surface mining may also cause subsidence of the surface due to the collapse of mined-out area and abandoned stone drifts.[3]

Disposal of mining wastes, spent oil shale (including semi-coke) and combustion ashes needs additional land use. According to the study of the European Academies Science Advisory Council, after processing, the waste material occupies a greater volume than the material extracted, and therefore cannot be wholly disposed underground. According to this, production of a barrel of shale oil can generate up to 1.5 tonnes of semi-coke, which may occupy up to 25% greater volume than the original shale.[3] This is not confirmed by the results of Estonia's oil shale industry. The mining and processing of about one billion tonnes of oil shale in Estonia has created about 360-370 million tonnes of solid waste, of which 90 million tonnes is a mining waste, 70–80 million tonnes is a semi-coke, and 200 million tonnes are combustion ashes.[5]

The waste material may consist of several pollutants including

  • Oil Shale and Tar Sands Draft Programmatic Environmental Impact Statement (EIS) Concerning potential leases of Federal oil sands lands in Utah and oil shale lands in Utah, Wyoming, and Colorado

External links and further reading

  1. ^ a b c Bartis, Jim (26 October 2006). "Unconventional Liquid Fuels Overview" (PDF). World Oil Conference.  
  2. ^ Mittal, Anu K. (10 May 2012). "Unconventional Oil and Gas Production. Opportunities and Challenges of Oil Shale Development" (PDF).  
  3. ^ a b c d e f g h i j Francu, Juraj; Harvie, Barbra; Laenen, Ben; Siirde, Andres; Veiderma, Mihkel (May 2007). "A study on the EU oil shale industry viewed in the light of the Estonian experience. A report by EASAC to the Committee on Industry, Research and Energy of the European Parliament" (PDF). European Academies Science Advisory Council. pp. 23–30. Retrieved 2011-05-06. 
  4. ^ Kattel, T. (2003). "Design of a new oil shale surface mine" (PDF).  
  5. ^ a b c d Kahru, A.; Põllumaa, L. (2006). "Environmental hazard of the waste streams of Estonian oil shale industry: an ecotoxicological review" (PDF).  
  6. ^ Mölder, Leevi (2004). "Estonian Oil Shale Retorting Industry at a Crossroads" (PDF).  
  7. ^ Tuvikene, Arvo; Sirpa Huuskonen; Kari Koponen; Ossi Ritola; Ülle Mauer; Pirjo Lindström-Seppä (1999). "Oil Shale Processing as a Source of Aquatic Pollution: Monitoring of the Biologic Effects in Caged and Feral Freshwater Fish" (PDF).  
  8. ^ Brendow, K. (2003). "Global oil shale issues and perspectives. Synthesis of the Symposium on Oil Shale. 18–19 November, Tallinn" (PDF).  
  9. ^ Speckman, Stephen (22 March 2008). "Oil-shale 'rush' is sparking concern".  
  10. ^ a b "Fact Sheet:Oil Shale Water Resources" (PDF). United States Department of Energy. Retrieved 2007-09-15. 
  11. ^ a b Bartis, James T.; LaTourrette, Tom; Dixon, Lloyd; Peterson, D.J.; Cecchine, Gary (2005). Oil Shale Development in the United States. Prospects and Policy Issues. Prepared for the National Energy Technology Laboratory of the United States Department of Energy (PDF).  
  12. ^ a b "Chapter 4. Effects of Oil Shale Technologies". Proposed Oil Shale and Tar Sands Resource Management Plan Amendments to Address Land Use Allocations in Colorado, Utah, and Wyoming and Final Programmatic Environmental Impact Statement (PDF).  
  13. ^ Luken, Larry (9 July 2005). "Oil Shale Myths". Shale Oil Information Center. Retrieved 2008-04-01. 
  14. ^ Fischer, Perry A. (August 2005). "Hopes for shale oil are revived". World Oil Magazine ( 
  15. ^ a b c Ots, Arvo (12 February 2007). "Estonian oil shale properties and utilization in power plants" (PDF). Energetika (Lithuanian Academy of Sciences Publishers) 53 (2): 8–18. Retrieved 2011-05-06. 
  16. ^ Teinemaa, E.; Kirso, U.; Strommen, M.R.; Kamens, R.M. (2003). "Deposition flux and atmospheric behavior of oil shale combustion aerosols" (PDF).  
  17. ^ Koel, Mihkel (1999). "Estonian oil shale".  
  18. ^ "The Greens Won't Line Up For Dirty Brown Coal In The Valley". Australian Greens Victoria. 18 August 2006. Archived from the original on 24 June 2007. Retrieved 2007-06-28. 
  19. ^ "Greenpeace Germany Protests Brown Coal Power Stations". Environment News Service. 28 May 2004. Archived from the original on 30 September 2007. Retrieved 2007-06-28. 
  20. ^ Grunewald, Elliot (6 June 2006). "Oil Shale and the Environmental Cost of Production" (PDF).  

References

See also

Currently, the in-situ process is the most attractive proposition due to the reduction in standard surface environmental problems. However, in-situ processes do involve possible significant environmental costs to aquifers, especially since in-situ methods may require ice-capping or some other form of barrier to restrict the flow of the newly gained oil into the groundwater aquifers. However, after the removal of the freeze wall these methods can still cause groundwater contamination as the hydraulic conductivity of the remaining shale increases allowing groundwater to flow through and leach salts from the newly toxic aquifer.[11][20]

In-situ processing

Emissions arise from several sources. These include CO2 released by the decomposition of the kerogen and carbonate minerals in the extraction process, the generation of the energy needed to heat the shale and in the other oil and gas processing operations, and fuel used in the mining of the rock and the disposal of waste.[3][15][17] As the varying mineral composition and calorific value of oil shale deposits varies widely, the actual values vary considerably.[3] At best, the direct combustion of oil shales produces carbon emissions similar to those from the lowest form of coal, lignite, at 2.15 moles CO2/MJ,[3] an energy source which is also politically contentious due to its high emission levels.[18][19] For both power generation and oil extraction, the CO2 emissions can be reduced by better utilization of waste heat from the product streams.

Carbon dioxide emissions from the production of shale oil and shale gas are higher than conventional oil production and a report for the European Union warns that increasing public concern about the adverse consequences of global warming may lead to opposition to oil shale development.[1][3]

Greenhouse gas emissions

Open deposition of semi-coke causes distribution of pollutants in addition to aqueous vectors also via air (dust).[5]

[15] depends primarily on the combustion technology and burning regime, while the emissions of solid particles are determined by the efficiency of fly ash-capturing devices.flue gas The concentration of air pollutants in [16][15] Main air pollution is caused by the

Air pollution management

Water represents the major vector of transfer of oil shale industry pollutants. One environmental issue is to prevent noxious materials leaching from spent shale into the water supply.[3] The oil shale processing is accompanied by the formation of process waters and waste waters containing phenols, tar and several other products, heavily separable and toxic to the environment.[5] A 2008 programmatic environmental impact statement issued by the United States Bureau of Land Management stated that surface mining and retort operations produce 2 to 10 U.S. gallons (7.6 to 37.9 l; 1.7 to 8.3 imp gal) of waste water per 1 short ton (0.91 t) of processed oil shale.[12]

Mining influences the water runoff pattern of the area affected. In some cases it requires the lowering of groundwater levels below the level of the oil shale strata, which may have harmful effects on the surrounding arable land and forest.[3] In Estonia, for each cubic meter of oil shale mined, 25 cubic meters of water must be pumped from the mine area.[8] At the same time, the thermal processing of oil shale needs water for quenching hot products and the control of dust. Water concerns are particularly sensitive issue in arid regions, such as the western part of the United States and Israel's Negev Desert, where there are plans to expand the oil shale industry.[9] Depending on technology, above-ground retorting uses between one and five barrels of water per barrel of produced shale oil.[1][10][10][11][12][13] In situ processing, according to one estimate, uses about one-tenth as much water.[14]

Water management

[5]

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.