World Library  
Flag as Inappropriate
Email this Article

Euclidean distance

Article Id: WHEBN0000053932
Reproduction Date:

Title: Euclidean distance  
Author: World Heritage Encyclopedia
Language: English
Subject: Travelling salesman problem, Distance, Davies–Bouldin index, Minkowski distance, Dunn index
Collection:
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Euclidean distance

In mathematics, the Euclidean distance or Euclidean metric is the "ordinary" distance between two points in Euclidean space. With this distance, Euclidean space becomes a metric space. The associated norm is called the Euclidean norm. Older literature refers to the metric as Pythagorean metric.

Definition

The Euclidean distance between points p and q is the length of the line segment connecting them (\overline{\mathbf{p}\mathbf{q}}).

In Cartesian coordinates, if p = (p1p2,..., pn) and q = (q1q2,..., qn) are two points in Euclidean n-space, then the distance (d) from p to q, or from q to p is given by the Pythagorean formula:

\begin{align}\mathrm{d}(\mathbf{p},\mathbf{q}) = \mathrm{d}(\mathbf{q},\mathbf{p}) & = \sqrt{(q_1-p_1)^2 + (q_2-p_2)^2 + \cdots + (q_n-p_n)^2} \\[8pt] & = \sqrt{\sum_{i=1}^n (q_i-p_i)^2}.\end{align}

 

 

 

 

(1)

The position of a point in a Euclidean n-space is a Euclidean vector. So, p and q are Euclidean vectors, starting from the origin of the space, and their tips indicate two points. The Euclidean norm, or Euclidean length, or magnitude of a vector measures the length of the vector:

\|\mathbf{p}\| = \sqrt{p_1^2+p_2^2+\cdots +p_n^2} = \sqrt{\mathbf{p}\cdot\mathbf{p}}

where the last equation involves the dot product.

A vector can be described as a directed line segment from the origin of the Euclidean space (vector tail), to a point in that space (vector tip). If we consider that its length is actually the distance from its tail to its tip, it becomes clear that the Euclidean norm of a vector is just a special case of Euclidean distance: the Euclidean distance between its tail and its tip.

The distance between points p and q may have a direction (e.g. from p to q), so it may be represented by another vector, given by

\mathbf{q} - \mathbf{p} = (q_1-p_1, q_2-p_2, \cdots, q_n-p_n)

In a three-dimensional space (n=3), this is an arrow from p to q, which can be also regarded as the position of q relative to p. It may be also called a displacement vector if p and q represent two positions of the same point at two successive instants of time.

The Euclidean distance between p and q is just the Euclidean length of this distance (or displacement) vector:

\|\mathbf{q} - \mathbf{p}\| = \sqrt{(\mathbf{q}-\mathbf{p})\cdot(\mathbf{q}-\mathbf{p})}.

 

 

 

 

(2)

which is equivalent to equation 1, and also to:

\|\mathbf{q} - \mathbf{p}\| = \sqrt{\|\mathbf{p}\|^2 + \|\mathbf{q}\|^2 - 2\mathbf{p}\cdot\mathbf{q}}.

One dimension

In one dimension, the distance between two points on the real line is the absolute value of their numerical difference. Thus if x and y are two points on the real line, then the distance between them is given by:

\sqrt{(x-y)^2} = |x-y|.

In one dimension, there is a single homogeneous, translation-invariant metric (in other words, a distance that is induced by a norm), up to a scale factor of length, which is the Euclidean distance. In higher dimensions there are other possible norms.

Two dimensions

In the Euclidean plane, if p = (p1p2) and q = (q1q2) then the distance is given by

\mathrm{d}(\mathbf{p},\mathbf{q})=\sqrt{(p_1-q_1)^2 + (p_2-q_2)^2}.

This is equivalent to the Pythagorean theorem.

Alternatively, it follows from (2) that if the polar coordinates of the point p are (r1, θ1) and those of q are (r2, θ2), then the distance between the points is

\sqrt{r_1^2 + r_2^2 - 2 r_1 r_2 \cos(\theta_1 - \theta_2)}.

Three dimensions

In three-dimensional Euclidean space, the distance is

d(p, q) = \sqrt{(p_1 - q_1)^2 + (p_2 - q_2)^2+(p_3 - q_3)^2}.

n dimensions

In general, for an n-dimensional space, the distance is

d(p, q) = \sqrt{(p_1- q_1)^2 + (p_2 - q_2)^2+\cdots+(p_i - q_i)^2+\cdots+(p_n - q_n)^2}.

Squared Euclidean distance

The standard Euclidean distance can be squared in order to place progressively greater weight on objects that are farther apart. In this case, the equation becomes

d^2(p, q) = (p_1 - q_1)^2 + (p_2 - q_2)^2+\cdots+(p_i - q_i)^2+\cdots+(p_n - q_n)^2.

Squared Euclidean Distance is not a metric as it does not satisfy the triangle inequality, however it is frequently used in optimization problems in which distances only have to be compared.

It is also referred to as quadrance within the field of rational trigonometry.

See also

References

  • Deza, Elena; Deza, Michel Marie (2009). Encyclopedia of Distances. Springer. p. 94. 
  • "Cluster analysis". March 2, 2011. 
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.