World Library  
Flag as Inappropriate
Email this Article

Exonuclease

Article Id: WHEBN0001212895
Reproduction Date:

Title: Exonuclease  
Author: World Heritage Encyclopedia
Language: English
Subject: TaqMan, Deoxyribonuclease, DNA polymerase II, Micrococcal nuclease, Frameshift mutation
Collection: Ec 3.1
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Exonuclease

3' to 5' Exonuclease associated with Pol I

Exonucleases are enzymes that work by cleaving nucleotides one at a time from the end (exo) of a polynucleotide chain. A hydrolyzing reaction that breaks phosphodiester bonds at either the 3’ or the 5’ end occurs. Its close relative is the endonuclease, which cleaves phosphodiester bonds in the middle (endo) of a polynucleotide chain. Eukaryotes and prokaryotes have three types of exonucleases involved in the normal turnover of mRNA: 5’ to 3’ exonuclease, which is a dependent decapping protein; 3’ to 5’ exonuclease, an independent protein; and poly(A)-specific 3’ to 5’ exonuclease.[1][2]

In both archaebacteria and eukaryotes, one of the main routes of RNA degradation is performed by the multi-protein exosome complex, which consists largely of 3' to 5' exoribonucleases.

Contents

  • Significance to polymerase 1
  • E. coli types 2
  • Discoveries in humans 3
  • Discoveries in yeast 4
  • External links 5
  • References 6

Significance to polymerase

RNA polymerase II is known to be in effect during transcriptional termination; it works with a 5’ exonuclease (human gene Xrn2) to degrade the newly formed transcript downstream, leaving the polyadenylation site and simultaneously shooting the polymerase. This process involves the exonuclease's catching up to the pol II and terminating the transcription.[3]

Pol I then synthesizes DNA nucleotides in place of the RNA primer it had just removed. DNA polymerase I also has 3' to 5' and 5' to 3' exonuclease activity, which is used in editing and proofreading DNA for errors. The 3' to 5' only remove one mononucleotide at once, and the 5' to 3' activity can remove mononucleotides or up to 10 nucleotides at a once

E. coli types

WRN Exonuclease with active sites in yellow

In 1971, Lehman IR discovered exonuclease I in E. coli. Since that time, there have been numerous discoveries including: exonuclease, II, III, IV, V, VI, VII, and VIII. Each type of exonuclease has a specific type of function or requirement.[4]

Exonuclease I breaks apart single-stranded DNA in a 3’ → 5’ direction, releasing deoxyribonucleoside 5'-monophosphates one after another. It does not cleave DNA strands without terminal 3'-OH groups because they are blocked by phosphoryl or acetyl groups. [5]

Exonuclease II is associated with DNA polymerase I, which contains a 5’ exonuclease that clips off the RNA primer contained immediately upstream from the site of DNA synthesis in a 5’ → 3’ manner.

Exonuclease III has four catalytic activities:

  • 3’ to 5’ exodeoxyribonuclease activity, which is specific for double-stranded DNA
  • RNase activity
  • 3’ phosphatase activity
  • AP endonuclease activity (later found to be called endonuclease II).[6]

Exonuclease IV adds a water molecule, so it can break the bond of an oligonucleotide to nucleoside 5’ monophosphate. This exonuclease requires Mg 2+ in order to function and works at higher temperatures than exonuclease I.[7]

Exonuclease V is a 3’ to 5’ hydrolyzing enzyme that catalyzes linear double-stranded DNA and single-stranded DNA, which requires Ca2+.[8] This enzyme is extremely important in the process of homologous recombination.

Exonuclease VIII is 5’ to 3’ dimeric protein that does not require ATP or any gaps or nicks in the strand, but requires a free 5’ OH group to carry out its function.

Discoveries in humans

The 3’ to 5’ human type endonuclease is known to be essential for the proper processing of histone pre-mRNA, in which U7 snRNP directs the single cleavage process. Following the removal of the downstream cleavage product (DCP) 5’ to 3’ exonuclease continues to further breakdown the product until it is completely degraded.[9] This allows the nucleotides to be recycled. 5’ To 3’ exonuclease is linked to a co-transcriptional cleavage (CoTC) activity that acts as a precursor to develop a free 5’ unprotected end, so the exonuclease can remove and degrade the downstream cleavage product (DCP). This initiates transcriptional termination because one does not want DNA or RNA strands building up in their bodies.[10]

Discoveries in yeast

CCR4-NOT is a general transcription regulatory complex in yeast that is found to be associated with mRNA metabolism, transcription initiation, and mRNA degradation. CCR4 has been found to contain RNA and single-stranded DNA 3’to 5’ exonuclease activities.[11] Another component associated with the CCR4 complex is CAF1 protein, which has been found to contain 3’to 5’ or 5’ to 3’ exonuclease domains in the mouse and Caenorhabditis elegans.[12] This protein has not been found in yeast, which suggests that it is likely to have an abnormal exonuclease domain like the one seen in a metazoan.[13] Yeast contains Rat1 and Xrn1 exonuclease. The Rat1 works just like the human type (Xrn2) and Xrn1 function in the cytoplasm is in the 5’ to 3’ direction to degrade RNAs (pre-5.8s and 25s rRNAs) in the absence of Rat1.[14][15]

External links

References

  1. ^ Mukherjee D; et al. (2004). "Analysis of RNA Exonucleolytic Activities in Cellular Extracts". Springer protocols 257: 193–211.  
  2. ^ Pamela A. Frischmeyer; et al. (2002). "An mRNA Surveillance Mechanism That Eliminates Transcripts Lacking Termination Codons". Science 295 (5563): 2258–61.  
  3. ^ Hage A EL; et al. (2008). "Efficient termination of transcription by RNA polymerase I requires the 5′ exonuclease Rat1 in yeast". Genes Dev. 22 (8): 1068–081.  
  4. ^ Paul D. Boyer (1952). The Enzymes (1st ed.). Academic Press. p. 211.  
  5. ^ Lehman IR, Nussbaum AL (August 1964). V. on the specificity of exonuclease I (Phosphodiesterase)"Escherichia Coli."The deoxyribonucleases of . J. Biol. Chem. 239 (8): 2628–36.  
  6. ^ Rogers SG, Weiss B (1980). "Exonuclease III of Escherichia coli K-12, an AP endonuclease". Meth. Enzymol. Methods in Enzymology 65 (1): 201–11.  
  7. ^ Mishra, N. C.; Mishra, Nawin C. (1995). Molecular biology of nucleases. Boca Raton: CRC Press. pp. 46–52.  
  8. ^ Douglas A. Julin (2000). "Detection and Quantitation of RecBCD Enzyme (Exonuclease V) Activity". DNA Repair Protocols. Methods in Molecular Biology 152. Humana Press. pp. 91–105.  
  9. ^ Yang XC, Sullivan KD, Marzluff WF, Dominski Z (January 2009). "Studies of the 5′ Exonuclease and Endonuclease Activities of CPSF-73 in Histone Pre-mRNA Processing". Mol. Cell. Biol. 29 (1): 31–42.  
  10. ^ West S, Gromak N, Proudfoot NJ (November 2004). "Human 5' → 3' exonuclease Xrn2 promotes transcription termination at co-transcriptional cleavage sites". Nature 432 (7016): 522–5.  
  11. ^ Chen J, Chiang YC, Denis CL (March 2002). "CCR4, a 3′–5′ poly(A) RNA and ssDNA exonuclease, is the catalytic component of the cytoplasmic deadenylase". EMBO J. 21 (6): 1414–26.  
  12. ^ Draper MP, Salvadore C, Denis CL (July 1995). "Identification of a mouse protein whose homolog in Saccharomyces cerevisiae is a component of the CCR4 transcriptional regulatory complex". Mol. Cell. Biol. 15 (7): 3487–95.  
  13. ^ Moser MJ, Holley WR, Chatterjee A, Mian IS (December 1997). "The proofreading domain of Escherichia coli DNA polymerase I and other DNA and/or RNA exonuclease domains". Nucleic Acids Res. 25 (24): 5110–8.  
  14. ^ Henry Y, Wood H, Morrissey JP, Petfalski E, Kearsey S, Tollervey D (May 1994). "The 5' end of yeast 5.8S rRNA is generated by exonucleases from an upstream cleavage site". EMBO J. 13 (10): 2452–63.  
  15. ^ Geerlings TH, Vos JC, Raué HA (December 2000). "The final step in the formation of 25S rRNA in Saccharomyces cerevisiae is performed by 5'-->3' exonucleases". RNA 6 (12): 1698–703.  
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.