World Library  
Flag as Inappropriate
Email this Article


Article Id: WHEBN0000592532
Reproduction Date:

Title: Feal  
Author: World Heritage Encyclopedia
Language: English
Subject: WikiProject Cryptography, N-Hash, Differential-linear attack, Linear cryptanalysis, Key whitening
Collection: Broken Block Ciphers, Feistel Ciphers
Publisher: World Heritage Encyclopedia


The FEAL Feistel function
Designers Akihiro Shimizu and Shoji Miyaguchi (NTT)
First published FEAL-4 in 1987; FEAL-N/NX in 1990
Cipher detail
Key sizes 64 bits (FEAL), 128 bits (FEAL-NX)
Block sizes 64 bits
Structure Feistel network
Rounds Originally 4, then 8, then variable (recommended 32)
Best public cryptanalysis
Linear cryptanalysis can break FEAL-4 with 5 known plaintexts (Matsui and Yamagishi, 1992). A differential attack breaks FEAL-N/NX with fewer than 31 rounds (Biham and Shamir, 1991).

In cryptography, FEAL (the Fast data Encipherment ALgorithm) is a block cipher proposed as an alternative to the Data Encryption Standard (DES), and designed to be much faster in software. The Feistel based algorithm was first published in 1987 by Akihiro Shimizu and Shoji Miyaguchi from NTT. The cipher is susceptible to various forms of cryptanalysis, and has acted as a catalyst in the discovery of differential and linear cryptanalysis.

There have been several different revisions of FEAL, though all are Feistel ciphers, and make use of the same basic round function and operate on a 64-bit block. One of the earliest designs is now termed FEAL-4, which has four rounds and a 64-bit key.

Problems were found with FEAL-4 from the start: Bert den Boer related a weakness in an unpublished rump session at the same conference where the cipher was first presented. A later paper (den Boer, 1988) describes an attack requiring 100–10000 chosen plaintexts, and Sean Murphy (1990) found an improvement that needs only 20 chosen plaintexts. Murphy and den Boer's methods contain elements similar to those used in differential cryptanalysis.

The designers countered by doubling the number of rounds, FEAL-8 (Shimizu and Miyaguchi, 1988). However, eight rounds also proved to be insufficient — in 1989, at the Securicom conference, Eli Biham and Adi Shamir described a differential attack on the cipher, mentioned in (Miyaguchi, 1989). Gilbert and Chassé (1990) subsequently published a statistical attack similar to differential cryptanalysis which requires 10000 pairs of chosen plaintexts.

In response, the designers introduced a variable-round cipher, FEAL-N (Miyaguchi, 1990), where "N" was chosen by the user, together with FEAL-NX, which had a larger 128-bit key. Biham and Shamir's differential cryptanalysis (1991) showed that both FEAL-N and FEAL-NX could be broken faster than exhaustive search for N ≤ 31. Later attacks, precursors to linear cryptanalysis, could break versions under the known plaintext assumption, first (Tardy-Corfdir and Gilbert, 1991) and then (Matsui and Yamagishi, 1992), the latter breaking FEAL-4 with 5 known plaintexts, FEAL-6 with 100, and FEAL-8 with 215.

In 1994, Ohta and Aoki presented a linear cryptanalytic attack against FEAL-8 that required 212 known plaintexts.[1]


  • See also 1
  • Notes 2
  • References 3
  • External links 4

See also


  1. ^ "Q79: What is FEAL?". Retrieved 2013-02-19. 


  • Eli Biham, Adi Shamir: Differential Cryptanalysis of Feal and N-Hash. EUROCRYPT 1991: 1–16
  • Bert den Boer, Cryptanalysis of F.E.A.L., EUROCRYPT 1988: 293–299
  • Henri Gilbert, Guy Chassé: A Statistical Attack of the FEAL-8 Cryptosystem. CRYPTO 1990: 22–33.
  • Shoji Miyaguchi: The FEAL Cipher Family. CRYPTO 1990: 627–638
  • Shoji Miyaguchi: The FEAL-8 Cryptosystem and a Call for Attack. CRYPTO 1989: 624–627
  • Mitsuru Matsui, Atsuhiro Yamagishi: A New Method for Known Plaintext Attack of FEAL Cipher. EUROCRYPT 1992: 81–91
  • Sean Murphy, The Cryptanalysis of FEAL-4 with 20 Chosen Plaintexts. J. Cryptology 2(3): 145–154 (1990)
  • A. Shimizu and S. Miyaguchi, Fast data encipherment algorithm FEAL, Advances in Cryptology — Eurocrypt '87, Springer-Verlag (1988), 267–280.
  • Anne Tardy-Corfdir, Henri Gilbert: A Known Plaintext Attack of FEAL-4 and FEAL-6. CRYPTO 1991: 172–181

External links

  • The FEAL home page
  • A sci.crypt article by Peter Gutmann describing FEAL
  • US patent 4850019
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.