World Library  
Flag as Inappropriate
Email this Article

Gelatine

Article Id: WHEBN0000183090
Reproduction Date:

Title: Gelatine  
Author: World Heritage Encyclopedia
Language: English
Subject: Collagen, E number, Ludichrist, Glossary of winemaking terms
Collection:
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Gelatine

For the dessert food, see Gelatin dessert.


Gelatin (or gelatine, from Latin: gelatus = stiff, frozen) is a translucent, colorless, brittle (when dry), flavorless solid substance, derived from collagen obtained from various animal by-products. It is commonly used as a gelling agent in food, pharmaceuticals, photography, and cosmetic manufacturing. Substances containing gelatin or functioning in a similar way are called gelatinous. Gelatin is an irreversibly hydrolysed form of collagen, and is classified as a foodstuff. It is found in most gummy candies as well as other products such as marshmallows, gelatin dessert, and some ice cream, dip and yogurt. Household gelatin comes in the form of sheets, granules, or powder. Instant types can be added to the food as they are; others need to be soaked in water beforehand.

Gelatin is classed as a food in its own right and not subject to the food additives legislation in Europe. For that reason gelatin has no E number.

Composition and properties

Gelatin is a mixture of peptides and proteins produced by partial hydrolysis of collagen extracted from the skin, bones, and connective tissues of animals such as domesticated cattle, chicken, pigs, and fish. Photographic and pharma grades of gelatin are generally made from beef bones, although some beef bone gelatin is used by the food industry. Gelatin is an animal protein unlike many other gelling agents used by the food industry.

The natural molecular bonds between individual collagen strands are broken down into a form that rearranges more easily. Gelatin melts to a liquid when heated and solidifies when cooled again. Together with water, it forms a semi-solid colloid gel. Gelatin forms a solution of high viscosity in water, which sets to a gel on cooling, and its chemical composition is, in many respects, closely similar to that of its parent collagen.[1] Gelatin is also soluble in most polar solvents.

Gelatin solutions show viscoelastic flow and streaming birefringence. If gelatin is put into contact with cold water, some of the material dissolves, but not all. The solubility of the gelatin is determined by the method of manufacture. Typically, gelatin can be dispersed in a relatively concentrated acid. Such dispersions are stable for 10–15 days with little or no chemical changes and are suitable for coating purposes or for extrusion into a precipitating bath.

Gelatin gels exist over only a small temperature range, the upper limit being the melting point of the gel, which depends on gelatin grade and concentration (but is typically less than 35 °C) and the lower limit the freezing point at which ice crystallizes. The upper melting point is below human body temperature, a factor which is important for mouthfeel of foods produced with gelatin.[2]

Mechanical properties of gelatin gels (for example the gel strength, which is quantified using the Bloom test) are very sensitive to temperature variations, previous thermal history of the gel, and time. The viscosity of the gelatin/water mixture increases with concentration and when kept cool (≈ 4 °C).

Production

The worldwide production amount of gelatin is about 375,000 tons per year (roughly 827 million lb). On a commercial scale, gelatin is made from by-products of the meat and leather industry. Recently, fish by-products have also been considered because they eliminate some of the religious obstacles surrounding gelatin consumption.[2] Gelatin is derived from pork skins, pork, horses, and cattle bones, or split cattle hides.[3] The raw materials are prepared by different curing, acid, and alkali processes which are employed to extract the dried collagen hydrolysate. These processes[4] may take up to several weeks, and differences in such processes have great effects on the properties of the final gelatin products.[5]

Gelatin can also be prepared in the home. Boiling certain cartilaginous cuts of meat or bones will result in gelatin being dissolved into the water. Depending on the concentration, the resulting stock (when cooled) will naturally form a jelly or gel. This process is used for aspic.

While there are many processes whereby collagen can be converted to gelatin, they all have several factors in common. The intermolecular and intramolecular bonds which stabilize insoluble collagen rendering it insoluble must be broken, and the hydrogen bonds which stabilize the collagen helix must also be broken.[1] The manufacturing processes of gelatin consists of three main stages:

  1. Pretreatments to make the raw materials ready for the main extraction step and to remove impurities which may have negative effects on physio chemical properties of the final gelatin product,
  2. The main extraction step, which is usually done with hot water or dilute acid solutions as a multi-stage extraction to hydrolyze collagen into gelatin, and finally,
  3. The refining and recovering treatments including filtration, clarification, evaporation, sterilization, drying, rutting, grinding, and sifting to remove the water from the gelatin solution, to blend the gelatin extracted, and to obtain dried, blended and ground final product.

Pretreatments

Template:Underlinked If the physical material that will be used in production is derived from bones, dilute acid solutions are used to remove calcium and similar salts. Hot water or several solvents may be used for de-greasing. Maximum fat content of the material should not exceed 1% before the main extraction step. If the raw material is hides and skin, size reduction, washing, removing hair from the hides, and de-greasing are the most important pretreatments used to make the hides and skins ready for the main extraction step.

Raw material preparation for extraction is done by three different methods: acid, alkali, and enzymatic treatments. Acid treatment is especially suitable for less fully crosslinked materials such as pig skin collagen. Pig skin collagen is less complex than the collagen found in bovine hides. Acid treatment is faster than alkali treatment and normally requires 10 to 48 hours. Alkali treatment is suitable for more complex collagen, e.g., the collagen found in bovine hides. This process requires more time, normally several weeks. The purpose of the alkali treatment is to destroy certain chemical crosslinkages still present in collagen. The gelatin obtained from acid-treated raw material has been called type-A gelatin[by whom?] and the gelatin obtained from alkali-treated raw material is referred to as type-B gelatin.[by whom?]

Enzymatic treatments used for preparing raw material for the main extraction step are relatively new. Enzymatic treatments have some advantages in contrast to alkali treatment:

  • time required for enzymatic treatment is short,
  • the yield is almost 100% in enzymatic treatment,
  • the purity is also higher, and
  • the physical properties of the final gelatin product are better. [according to whom?]

Extraction

After preparation of the raw cool material, i.e., reducing crosslinkages between collagen components and removing some of the impurities such as fat and salts, partially purified collagen is converted into gelatin by extraction with either water or acid solutions at appropriate temperatures. All industrial processes are based on neutral or acid pH values because though alkali treatments speed up conversion, they also promote degradation processes. Acid extract conditions are extensively used in the industry but the degree of acid varies with different processes. This extraction step is a multi stage process, and the extraction temperature is usually increased in later extraction steps. This procedure ensures the minimum thermal degradation of the extracted gelatin.

Recovery

This process includes several steps such as filtration, evaporation, drying, grinding, and sifting. These operations are concentration-dependent and also dependent on the particular gelatin used. Gelatin degradation should be avoided and minimized, therefore the lowest temperature possible is used for the recovery process. Most recoveries are rapid, with all of the processes being done in several stages to avoid extensive deterioration of the peptide structure. A deteriorated peptide structure would result in a low gelling strength, which is not generally desired.

Uses

Probably best known as a gelling agent in cooking, different types and grades of gelatin are used in a wide range of food and non-food products: Common examples of foods that contain gelatin are gelatin desserts, trifles, aspic, marshmallows, candy corn, and confections such as Peeps, gummy bears, fruit snacks, and jelly babies. Gelatin may be used as a stabilizer, thickener, or texturizer in foods such as yogurt, cream cheese, and margarine; it is used, as well, in fat-reduced foods to simulate the mouthfeel of fat and to create volume without adding calories.

Gelatin is used for the clarification of juices, such as apple juice, and of vinegar. Isinglass, from the swim bladders of fish, is still used as a fining agent for wine and beer.[6] Beside hartshorn jelly, from deer antlers (hence the name "hartshorn"), isinglass was one of the oldest sources of gelatin.

Technical uses


  • Certain professional and theatrical lighting equipment use color gels to change the beam color. These were historically made with gelatin, hence the term color gel.
  • Gelatin typically constitutes the shells of pharmaceutical capsules in order to make them easier to swallow. Hypromellose is a vegetarian-acceptable alternative to gelatin, but is more expensive to produce.
  • Animal glues such as hide glue are essentially unrefined gelatin.
  • It is used to hold silver halide crystals in an emulsion in virtually all photographic films and photographic papers. Despite some efforts, no suitable substitutes with the stability and low cost of gelatin have been found.
  • Used as a carrier, coating or separating agent for other substances; for example, it makes beta-carotene water-soluble thus imparting a yellow colour to any soft drinks containing beta-carotene.
  • Gelatin is closely related to bone glue and is used as a binder in match heads and sandpaper.
  • Cosmetics may contain a non-gelling variant of gelatin under the name hydrolyzed collagen.
  • Gelatin was first used as an external surface sizing for paper in 1337 and continued as a dominant sizing agent of all European papers through the mid-19th century.[7] In modern times it occasionally found in some glossy printing papers, artistic papers, playing cards, and it maintains the wrinkles in crêpe paper.

Other uses

  • Blocks of ballistic gelatin simulate muscle tissue as a standardized medium for testing firearms ammunition.
  • Gelatin is used by synchronized swimmers to hold their hair in place during their routines as it will not dissolve in the cold water of the pool. It is frequently referred to as "knoxing," a reference to Knox brand gelatin.[8]
  • When added to boiling water and cooled, unflavored gelatin can make a home-made hair styling gel that is cheaper than many commercial hair styling products, but by comparison has a shorter shelf life (about a week) when stored in this form (usually in a refrigerator). After being applied to scalp hair, it can be removed with rinsing and some shampoo.
  • It is commonly used as a biological substrate to culture adherent cells.
  • Also used by those who are sensitive to tannins (which can irritate the stomach) in teas, soups or brews.
  • It may be used as a medium with which to consume LSD. LSD in gelatin form is known as "windowpane" or "geltabs."
  • Gelatin is used to make the shells of paintballs, similar to the way pharmaceutical capsules are produced.
  • Gelatin is also used as an ingredient in implantable medical devices, such as in some bone void fillers.
  • Gelatin is also used in nail polish remover and makeup applications. The gelatin is often tinted in different colors to match a model's natural skin tone.
  • Leaf or sheet gelatin is also used directly in food-based model-making, for example to make translucent, edible, diamond-paned windows in gingerbread houses.[9]
  • Gelatin can be used as a binding agent in india ink.
  • Gelatin may additionally be used as a technique within the process of fine art printmaking. The prints are made by creating a block of gelatin and applying printing inks. The gelatin is made using twice the normal amount of gelatin granules to the usual amount of water. Once set - printmaking ink (usually water based) is applied to its surface. Other water based media may also be applied. Items such as dried grass, leaves and paper stencils are placed onto the inked surface. Gelatin monotype is best done with the use of medium to lightweight paper. This is gently pressed onto the inked plate once the 'design' has been composed.

Religion and gelatin substitutes

Special kinds of gelatin indicate the specific animal that was used for its production. For example, Muslim halal or Jewish kosher customs require gelatin from sources other than pigs, like cows and/or fish and from animals slaughtered ritually. Islam forbids consumption of pork and thus products that contain pork gelatin. There are many companies that specify the source of the gelatin used, and advise consumers via the nutrition information and/or their hotline. Likewise, Hindu & Jain customs may require gelatin-alternatives from sources other than animals, as many Hindus are vegetarian.

Hindus who are not vegetarians will often consume gelatin from all sources except cow, which is considered sacred. Vegans and strict vegetarians choose not to eat foods containing gelatin made from animals. Romani people are cautious of gelatin products that may have been made from horses, as their culture forbids consuming horses. Other people simply consider gelatin unpalatable due to the ingredients used in its production.

Partial alternatives to gelatin include non-animal gel sources such as agar, carrageenan (both seaweed extracts), pectin, and konjak.

Research into synthetic collagen is ongoing, as of 2011 partial success has been achieved in replicating collagen's structure using self-assembling peptides. [10]

Medical and nutritional properties

Although gelatin is 98-99% protein by dry weight, it has less nutritional value than many other complete protein sources. Gelatin is unusually high in the non-essential amino acids glycine and proline (i.e., those produced by the human body), while lacking certain essential amino acids (i.e., those not produced by the human body). It contains no tryptophan and is deficient in isoleucine, threonine, and methionine. The approximate amino acid composition of gelatin is: glycine 21%, proline 12%, hydroxyproline 12%, glutamic acid 10%, alanine 9%, arginine 8%, aspartic acid 6%, lysine 4%, serine 4%, leucine 3%, valine 2%, phenylalanine 2%, threonine 2%, isoleucine 1%, hydroxylysine 1%, methionine and histidine <1% and tyrosine <0.5%. These values vary, especially the minor constituents, depending on the source of the raw material and processing technique.[11]

Several Russian researchers offer the following opinion regarding certain peptides found in gelatin: "gelatin peptides reinforce resistance of the stomach mucous tunic to ethanol and stress action, decreasing the ulcer area by twice."[12]

Gelatin is also a topical haemostatic. A piece of gelatin sponge of appropriate size is applied on bleeding wound, pressed for some time and tied in bandage. Haemostatic action is based on platelets damage at the contact of blood with gelatin, which activates the coagulation cascade. Gelatin also causes a tamponading effect - blood flow stoppage into a blood vessel by a constriction of the vessel by an outside force.[13]

Gelatin has also been claimed to promote general joint health. A study at Ball State University sponsored by Nabisco, the former parent company of Knox gelatin,[14]

It has been claimed that oral gelatin consumption has a beneficial therapeutic effect on hair loss in both men and women.[15][16][17][18][19][20][21][22]In addition there are scientific publications that present evidence that consumption of oral gelatin has beneficial effect for some fingernail changes and diseases.[23][24][25][26][27][28][29][30]

Safety concerns

Strict regulations apply for all steps in the gelatin manufacturing process. Gelatin is produced from natural raw materials which originate from animals that have been examined and accepted for human consumption by veterinary authorities. Hygienic regulations with respect to fresh raw materials are ensured and each batch of raw material delivered to the manufacturing plant is immediately checked and documented.

In addition to the raw material quality, also the production process itself is an effective quality assurance measure. In the production process a comprehensive monitoring system ensures that potential risks are minimized.

The U.S. Food and Drug Administration (FDA), with support from the TSE (Transmissible spongiform encephalopathy) Advisory Committee, has since 1997 been monitoring the potential risk of transmitting animal diseases, especially bovine spongiform encephalopathy (BSE), commonly known as Mad Cow disease. The FDA study concluded: "...steps such as heat, alkaline treatment, and filtration could be effective in reducing the level of contaminating TSE agents; however, scientific evidence is insufficient at this time to demonstrate that these treatments would effectively remove the BSE infectious agent if present in the source material."[31]

The Scientific Steering Committee (SSC) of the European Union (EU) in 2003 stated that the risk associated with bovine bone gelatin is very low or zero.[32][33] In 2006 the European Food Safety Authority (EFSA) stated that the SSC opinion was confirmed, that the BSE risk of bone-derived gelatin was very small, and removed support for the 2003 request of excluding the skull and vertebrae of bovine origin older than 12 months from the material used in gelatin manufacturing.[34]

All reputable gelatin manufacturers today follow the Quality Management System according to ISO 9001 to comply with all required physical, chemical, microbiological and technical production and quality standards. In this way all process steps follow international laws and customer-specific quality parameters and are guaranteed and documented. For pharmaceutical grade gelatins strict regulations from the Food and Drug Administration (FDA), the European CPMP's regulation and European Pharmacopoeia must be met. A detailed overview of the regulatory requirements for gelatin production can be found in the Gelatine Handbook, page 99-101.[35]

References

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.