World Library  
Flag as Inappropriate
Email this Article


Article Id: WHEBN0003202222
Reproduction Date:

Title: Glucuronosyltransferase  
Author: World Heritage Encyclopedia
Language: English
Subject: Hexosyltransferase, Articles for deletion/Dolichyl-P-Glc:Glc1Man9GlcNAc2-PP-dolichol alpha-1,3-glucosyltransferase, Allethrins, Augustin Nicolas Gilbert, Transferases
Publisher: World Heritage Encyclopedia


EC number
CAS number 9030-08-4
IntEnz IntEnz view
ExPASy NiceZyme view
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Gene Ontology AmiGO / EGO
UDP-glucuronosyl and UDP-glucosyl transferase
Structure of TDP-vancosaminyltransferase GtfD as a complex with TDP and the natural substrate, desvancosaminyl vancomycin.[1]
Symbol UDPGT
Pfam PF00201
InterPro IPR002213
SCOP 1rrv

Uridine 5'-diphospho-glucuronosyltransferase (UDP-glucuronosyltransferase, UGT) is a cytosolic glycosyltransferase (EC that catalyzes the transfer of the glucuronic acid component of UDP-glucuronic acid to a small hydrophobic molecule. This is a glucuronidation reaction.[2]

Alternative names:

  • glucuronyltransferase
  • UDP-glucuronyl transferase
  • UDP-GT


  • Function 1
  • Diseases 2
  • Genes 3
  • References 4
  • External links 5


Glucuronosyltransferases are responsible for the process of glucuronidation, a major part of phase II metabolism. Arguably the most important of the Phase II (conjugative) enzymes, UGTs have been the subject of increasing scientific inquiry since the mid-to-late 1990s.

The reaction catalyzed by the UGT enzyme involves the addition of a glucuronic acid moiety to xenobiotics and is the most important pathway for the human body's elimination of the most frequently prescribed drugs. It is also the major pathway for foreign chemical (dietary, environmental, pharmaceutical) removal for most drugs, dietary substances, toxins and endogenous substances. UGT is present in humans, other animals, plants, and bacteria. Famously, UGT enzymes are not present in the genus Felis,[3] and this accounts for a number of unusual toxicities in the cat family.

The glucuronidation reaction consists of the transfer of the glucuronosyl group from uridine 5'-diphospho-glucuronic acid (UDPGA) to substrate molecules that contain oxygen, nitrogen, sulfur or carboxyl functional groups.[4] The resulting glucuronide is more polar (e.g. hydrophilic) and more easily excreted than the substrate molecule. The product solubility in blood is increased allowing it to be eliminated from the body by the kidneys.


A deficiency in the bilirubin specific form of glucuronosyltransferase is thought to be the cause of Gilbert's syndrome, which is characterized by unconjugated hyperbilirubinemia.

It is also associated with Crigler-Najjar syndrome, a more serious disorder where the enzyme's activity is either completely absent (Crigler-Najjar syndrome type I) or less than 10% of normal (type II).

Infants may have a developmental deficiency in UDP-glucuronyl transferase, and are unable to hepatically metabolize the antibiotic drug chloramphenicol which requires glucuronidation. This leads to a condition known as gray baby syndrome.[5]


Human genes which encode UGT enzymes include:


  1. ^ Mulichak AM, Lu W, Losey HC, Walsh CT, Garavito RM (May 2004). "Crystal structure of vancosaminyltransferase GtfD from the vancomycin biosynthetic pathway: interactions with acceptor and nucleotide ligands". Biochemistry 43 (18): 5170–5180.  
  2. ^ King C, Rios G, Green M, Tephly T (2000). "UDP-glucuronosyltransferases". Curr Drug Metab 1 (2): 143–161.  
  3. ^ Court MH and Greenblatt DJ (2000). "Molecular genetic basis for deficient acetaminophen glucuronidation by cats: UGT1A6 is a pseudogene, and evidence for reduced diversity of expressed hepatic UGT1A isoforms". Pharmacogenetics. 10 (4): 355–69.  
  4. ^ Bock K, Köhle C (2005). "UDP-glucuronosyltransferase 1A6: structural, functional, and regulatory aspects". Methods Enzymol 400: 57–75.  
  5. ^ MacDougall, C; Chambers, HF (2011). "55". Protein Synthesis Inhibitors and Miscellaneous Antibacterial Agents. In: Brunton LL, Chabner BA, Knollmann BC, eds. Goodman & Gilman's The Pharmacological Basis of Therapeutics. (12 ed.). New York: McGraw-Hill. Retrieved October 19, 2011. 

External links

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.