#jsDisabledContent { display:none; } My Account |  Register |  Help
 Flag as Inappropriate This article will be permanently flagged as inappropriate and made unaccessible to everyone. Are you certain this article is inappropriate?          Excessive Violence          Sexual Content          Political / Social Email this Article Email Address:

# Great dodecahedron

Article Id: WHEBN0002860441
Reproduction Date:

 Title: Great dodecahedron Author: World Heritage Encyclopedia Language: English Subject: Collection: Publisher: World Heritage Encyclopedia Publication Date:

### Great dodecahedron

In geometry, the great dodecahedron is a Kepler-Poinsot polyhedron, with Schläfli symbol {5,5/2} and Coxeter-Dynkin diagram of . It is one of four nonconvex regular polyhedra. It is composed of 12 pentagonal faces (six pairs of parallel pentagons), with five pentagons meeting at each vertex, intersecting each other making a pentagrammic path.

## Contents

• Images 1
• Related polyhedra 2
• Usage 3
• See also 4
• External links 5

## Images

Transparent model Spherical tiling

(With animation )

This polyhedron represents a spherical tiling with a density of 3. (One spherical pentagon face is shown above in yellow)
Net Stellation
× 20
Net for surface geometry; twenty isosceles triangular pyramids, arranged like the faces of an icosahedron

It can also be constructed as the second of three stellations of the dodecahedron, and referenced as Wenninger model [W21].

## Related polyhedra

It shares the same edge arrangement as the convex regular icosahedron.

If the great dodecahedron is considered as a properly intersected surface geometry, it has the same topology as a triakis icosahedron with concave pyramids rather than convex ones.

A truncation process applied to the great dodecahedron produces a series of nonconvex uniform polyhedra. Truncating edges down to points produces the dodecadodecahedron as a rectified great dodecahedron. The process completes as a birectification, reducing the original faces down to points, and producing the small stellated dodecahedron.

Name Small stellated dodecahedron Dodecadodecahedron Truncated
great
dodecahedron
Great
dodecahedron
Coxeter-Dynkin
diagram
Picture

## See also

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.