World Library  
Flag as Inappropriate
Email this Article

Great snub icosidodecahedron

Article Id: WHEBN0004157558
Reproduction Date:

Title: Great snub icosidodecahedron  
Author: World Heritage Encyclopedia
Language: English
Subject: Great retrosnub icosidodecahedron, Uniform polyhedra, Great inverted snub icosidodecahedron, Snub polyhedron, Snub (geometry)
Collection:
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Great snub icosidodecahedron

Great snub icosidodecahedron
Type Uniform star polyhedron
Elements F = 92, E = 150
V = 60 (χ = 2)
Faces by sides (20+60){3}+12{5/2}
Wythoff symbol |2 5/2 3
Symmetry group I, [5,3]+, 532
Index references U57, C88, W116
Dual polyhedron Great pentagonal hexecontahedron
Vertex figure
34.5/2
Bowers acronym Gosid

In geometry, the great snub icosidodecahedron is a nonconvex uniform polyhedron, indexed as U57. It can be represented by a Schläfli symbol sr{5/2,3}, and Coxeter-Dynkin diagram .

This polyhedron is the snub member of a family that includes the great icosahedron, the great stellated dodecahedron and the great icosidodecahedron.

Contents

  • Cartesian coordinates 1
  • Related polyhedra 2
    • Great pentagonal hexecontahedron 2.1
  • See also 3
  • References 4
  • External links 5

Cartesian coordinates

Cartesian coordinates for the vertices of a great snub icosidodecahedron are all the even permutations of

(±2α, ±2, ±2β),
(±(α−βτ−1/τ), ±(α/τ+β−τ), ±(−ατ−β/τ−1)),
(±(ατ−β/τ+1), ±(−α−βτ+1/τ), ±(−α/τ+β+τ)),
(±(ατ−β/τ−1), ±(α+βτ+1/τ), ±(−α/τ+β−τ)) and
(±(α−βτ+1/τ), ±(−α/τ−β−τ), ±(−ατ−β/τ+1)),

with an even number of plus signs, where

α = ξ−1/ξ

and

β = −ξ/τ+1/τ2−1/(ξτ),

where τ = (1+√5)/2 is the golden mean and ξ is the negative real root of ξ3−2ξ=−1/τ, or approximately −1.5488772. Taking the odd permutations of the above coordinates with an odd number of plus signs gives another form, the enantiomorph of the other one.

Related polyhedra

Great pentagonal hexecontahedron

Great pentagonal hexecontahedron
Type Star polyhedron
Face
Elements F = 60, E = 150
V = 92 (χ = 2)
Symmetry group I, [5,3]+, 532
Index references DU57
dual polyhedron Great snub icosidodecahedron

The great pentagonal hexecontahedron is a nonconvex isohedral polyhedron and dual to the uniform great snub icosidodecahedron. It has 60 intersecting irregular pentagonal faces, 120 edges, and 92 vertices.

See also

References

External links


This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.