World Library  
Flag as Inappropriate
Email this Article

Hans Adolf Krebs

Article Id: WHEBN0000169025
Reproduction Date:

Title: Hans Adolf Krebs  
Author: World Heritage Encyclopedia
Language: English
Subject: List of Nobel laureates by university affiliation, Nobel Prize in Physiology or Medicine, University of Sheffield, University of Sheffield student housing, Hans Kornberg
Collection: 1900 Births, 1981 Deaths, Academics of the University of Cambridge, Academics of the University of Sheffield, British Biochemists, British Jews, British Nobel Laureates, British People of German-Jewish Descent, Fellows of Girton College, Cambridge, Fellows of the Royal Society, German Emigrants to the United Kingdom, German Jews, German Nobel Laureates, Humboldt University of Berlin Alumni, Jewish Chemists, Jewish Scientists, Jews Who Emigrated to the United Kingdom to Escape Nazism, Jews Who Immigrated to the United Kingdom to Escape Nazism, Knights Bachelor, Ludwig Maximilian University of Munich Alumni, Naturalised Citizens of the United Kingdom, Nobel Laureates in Physiology or Medicine, People from Hildesheim, People from the Province of Hanover, Recipients of the Albert Lasker Award for Basic Medical Research, Recipients of the Copley Medal, Royal Medal Winners, University of Freiburg Alumni, University of Freiburg Faculty, University of Göttingen Alumni, University of Hamburg Alumni, Whitley Professors of Biochemistry
Publisher: World Heritage Encyclopedia

Hans Adolf Krebs

Sir Hans Adolf Krebs
Born (1900-08-25)25 August 1900
Hildesheim, Germany
Died 22 November 1981(1981-11-22) (aged 81)
Oxford, England
Citizenship Naturalised British (from 1939)
Nationality German
Fields Internal medicine, biochemistry
Institutions Kaiser Wilhelm Institute for Biology
University of Hamburg
Cambridge University
University of Sheffield
University of Oxford
Alma mater University of Göttingen
University of Freiburg
University of Berlin
University of Hamburg
Known for Krebs cycle
Krebs–Henseleit solution
Krebs-Henseleit cycle
Glyoxylate cycle
Notable awards Nobel Prize in Physiology or Medicine (1953)
Royal Medal (1954)
Copley Medal (1961)
Spouse Margaret Cicely Fieldhouse (m. 1938)
Children Paul, John, and Helen

Sir Hans Adolf Krebs (25 August 1900 – 22 November 1981)[1][2][3][4][5] was a German-born British physician and biochemist.[6] He was the pioneer scientist in study of cellular respiration, a biochemical pathway in cells for production of energy.[7][8] He is best known for his discoveries of two important chemical reactions in the body, namely the urea cycle and the citric acid cycle. The latter, the key sequence of metabolic reactions that produces energy in cells, often eponymously known as the "Krebs cycle", earned him a Nobel Prize in Physiology or Medicine in 1953. With Hans Kornberg, he also discovered the glyoxylate cycle, which is a slight variation of the citric acid cycle found in plants, bacteria, protists, and fungi.


  • Biography 1
    • Early life and education 1.1
    • Career 1.2
    • Personal life and death 1.3
  • Achievements 2
    • Krebs-Henseleit (urea) cycle 2.1
    • Krebs (TCA) cycle 2.2
    • Glyoxylate cycle 2.3
  • Honours and awards 3
  • Legacy 4
  • See also 5
  • References 6
  • Bibliography 7
  • External links 8


Early life and education

Krebs was born in ear, nose, and throat surgeon, and Alma Krebs (née Davidson). He was the middle of three children, older sister Elisabeth and younger brother Wolfgang. He attended the famous old Gymnasium Andreanum in his home town. Before completing his secondary school education (by six months), he was drafted in the Imperial German Army during World War I in September 1918. He was allowed to appear in an emergency higher school leaving certificate, which he passed in such a good grade that he suspected the examiners of being “unduly lenient and sympathetic”.[9] The war ended after two months and his conscription ended. He decided to follow his father's profession and entered the University of Göttingen in December 1918 to study medicine. In 1919 he transferred to the University of Freiburg. In 1923 he published his first technical paper on tissue staining technique, the study which he started under the guidance of his teacher Wilhelm von Mollendorf in 1920. He completed his medical course in December 1923. To obtain a medical license he spent one year at the Third Medical Clinic in the University of Berlin. By then he turned his ambition from becoming a practising physician to medical researcher, particularly towards chemistry. In 1924 he studied at the Department of Chemistry at the Pathological Institute of the Charité Hospital, Berlin, for informal training in chemistry and biochemistry. He finally earned his M.D. degree in 1925 from the University of Hamburg.[10][11]


In 1926 Krebs joined Otto Heinrich Warburg as a research assistant at the Kaiser Wilhelm Institute for Biology in Dahlem, Berlin. He was paid a modest 4800 marks per year. After four years in 1930, with 16 publications to his credit, his mentor Warburg urged him to move on and he took up the position of Assistant in the Department of Medicine at the Municipal Hospital in Altona (now part of Hamburg). The next year he moved to the Medical Clinic of the University of Freiburg. At Freiburg he was in-charge of about 40 patients, and was at liberty to do his own research. Before a year was over at Freiburg, he, with a research student Kurt Henseleit, postulated the metabolic pathway for urea formation, now known as the ornithine cycle of urea synthesis. (Sometimes also referred to as the Krebs-Henseleit cycle. Together they also developed a complex solution for studying blood flow in arteries or perfusion ex vivo called Krebs-Henseleit solution or buffer.)[12][13] In 1932 he worked out the basic chemical reactions of urea cycle, which established his scientific reputation.

Krebs life as a reputed German scientist came to an abrupt halt because of his Jewish ancestry. With the rise of Hitler’s Nazi Party to power, Germany decreed the Law for the Restoration of the Professional Civil Service (the removal of all non-Aryans and anti-Nazis from professional occupations). Krebs received official dismissal from his job in April 1933, and his service was terminated on 1 July. An admirer, Sir Frederick Gowland Hopkins at the University of Cambridge, immediately came to his rescue and persuaded the university to recruit Krebs to work with him in the Department of Biochemistry.[14] By July 1933 he settled in Cambridge with financial support from the Rockefeller Foundation. Although he was restricted to bring only his personal belongings, he was fortunate to be allowed to take his equipment and research samples to England, as they proved to be pivotal to his later discoveries, especially the manometer developed by Warburg specifically for the measurement of oxygen consumption in thin slices of tissues; it was the basis for his research.[15] He was appointed as Demonstrator in biochemistry in 1934 and in 1935 the University of Sheffield offered him a post of Lecturer in Pharmacology, with a more spacious laboratory and double the salary; he worked there for 19 years. University of Sheffield opened a Department of Biochemistry (now Department of Molecular Biology and Biotechnology) in 1938 and Krebs became its first Head, and eventually Professor in 1945. Krebs took over the running of the Sorby Research Institute in 1943. In 1944, the British Medical Research Council established the MRC Unit for Cell Metabolism Research at Sheffield, and Krebs was appointed as the Director. With this his laboratory became so expanded that the locals jokingly nicknamed it “Krebs's Empire”. He moved with his MRC unit to the University of Oxford in 1954 as Whitley Professor of Biochemistry, the post he held till his retirement in 1967. The editorial board of Biochemical Journal extended their good wishes on his retirement, but in return he promised to keep them busy (by producing scientific papers). He continued research and took his MRC unit to the Nuffield Department of Clinical Medicine at the Radcliffe Infirmary, Oxford. From there he published over 100 research papers.[10][11][16][17]

Personal life and death

Krebs met Margaret Cicely Fieldhouse (born 1913) when he moved to Sheffield in 1935. They got married on 22 March 1938. Krebs would later describe his life in Sheffield as “19 happy years”.[10] They had two sons, Paul (born 1939) and John (born 1945), and a daughter, Helen (born 1942).[18] John (Sir John Krebs, and later Baron Krebs) became a renowned ornithologist, Professor at the University of Oxford, Principal of Jesus College, Oxford, and Member of the British House of Lords.[19]

After a brief illness, Krebs died on 22 November 1981 in Oxford.[3][20]


Krebs-Henseleit (urea) cycle

While working at the Medical Clinic of the University of Freiburg, Krebs met Kurt Henseleit, with whom he investigated the chemical process of urea formation. In 1904, two Germans A. Kossel and H.D. Dakin had shown that

  • Biography – Hans Adolf Krebs Nobel Prize
  • 1953 Prize in Physiology or Medicine Nobel Prizes
  • Deconstructing the Tour, University of Sheffield (biography)
  • Sir Hans Adolf Krebs at whonamedit
  • Sir Hans Adolf Krebs Facts at YOURDICTIONARY
  • Catalogue of the papers and correspondence of SIR HANS ADOLF KREBS, FRS (1900-1981)

External links


  1. ^
  2. ^
  3. ^ a b c
  4. ^ a b
  5. ^
  6. ^
  7. ^
  8. ^
  9. ^
  10. ^ a b c
  11. ^ a b
  12. ^
  13. ^
  14. ^
  15. ^ a b c
  16. ^
  17. ^
  18. ^
  19. ^ a b
  20. ^
  21. ^
  22. ^
  23. ^
  24. ^
  25. ^
  26. ^
  27. ^
  28. ^
  29. ^
  30. ^
  31. ^
  32. ^
  33. ^
  34. ^
  35. ^
  36. ^
  37. ^
  38. ^
  39. ^
  40. ^
  41. ^
  42. ^
  43. ^
  44. ^


See also

The Biochemical Society offers Krebs Memorial Scholarship to a postgraduate (PhD) student working in biochemistry or an allied biomedical science at any British university. As of 2014, the scholarship is worth £18,500 and is given for a year, but is extendable up to three years.[44]

The Society of Friends of Hannover Medical School gives the Sir Hans Krebs Prize, which is worth 10,000 euros.[42][43]

In 1990 the Federation of European Biochemical Societies instituted the Sir Hans Krebs Lecture and Medal, which was endowed by the Lord Rank Centre for Research. It is awarded for outstanding achievements in biochemistry and molecular biology.[40][41]

The University of Sheffield has The Krebs Institute started in 1988. It is a research centre covering interdisciplinary programmes in biochemical research.[39]

Professor Sir Hans Krebs FRS 1900 – 1981 Biochemist & discoverer of the Krebs cycle Nobel Prize Winner 1953 worked here 1954 – 1967

The University of Oxford has a building named Hans Krebs Tower, which was occupied by the Department of Biochemistry. In 2008 a new building for the Department of Biochemistry was constructed on which a plaque was placed on 20 May 2013 by the Association of Jewish Refugees.[37] The honorific plaque was unveiled by Lord John Krebs and the inscription reads:[38]


Krebs became a naturalised British citizen in 1939. He was elected Fellow of Trinity College, Oxford, between 1954 and 1967. He was elected to the Royal Society in 1947. In 1953 he received the Nobel Prize in Physiology or Medicine for his "discovery of the citric acid cycle." (He shared the Nobel Prize with Fritz Lipmann.) For the same reason he was given the Albert Lasker Award for Basic Medical Research in 1953.[35] The Royal Society awarded him its Royal Medal in 1954, and Copley Medal in 1961.[19] In 1958 he received the Gold Medal of the Netherlands Society for Physics, Medical Science and Surgery. He was knighted in 1958 and was elected Honorary Fellow of Girton College, Cambridge University in 1979. He was the Original Member of the Society for General Microbiology, which conferred him Honorary Membership in 1980. He received an honorary doctorate degree from 21 universities.[36]

Honours and awards

Krebs continued to add more details to his citric acid cycle. The discovery of acetyl-CoA in 1947 by Fritz Albert Lipmann was another major contribution.[4][32] However this new discovery posed a problem in his classic reaction. In 1957 he, with Hans Kornberg, found that there were additional crucial enzymes. One was malate synthase, which condenses acetate with glyoxylate to form malate, and the other was isocitrate lyase, which provides glyoxylate for the reaction by cleaving it from isocitrate.[33] These two reactions did not follow the normal citric acid cycle, and hence the pathway was named the glyoxylate bypass of the citric acid cycle, but is now known as the glyoxylate cycle.[15][34]

Glyoxylate cycle

Then Krebs wrote a short manuscript of the discovery to Nature on 10 June 1937. On 14 June he received a rejection letter from the editor who expressed that the journal had "already sufficient letters to fill correspondence columns of NATURE for seven or eight weeks" and that Krebs was encouraged to "submit it for early publication to another periodical."[27] Krebs immediately prepared a longer version titled "The Role of Citric Acid in Intermediate Metabolism in Animal Tissues" which he sent to the Dutch journal Enzymologia after two weeks and was published in two months.[3][28] It was followed by a series of papers in different journals.[29][30][31]

At the University of Sheffield, Krebs and William Johnson investigated cellular respiration by which oxygen was consumed to produce energy from the breakdown of glucose. Krebs had earlier suggested to Warburg while they worked together in Germany that using manometer it could be possible to detect the oxygen consumption and identify the chemical reaction in glucose metabolism. Warburg had flatly rejected the idea. In Sheffield he vigorously worked for possible chemical reaction and came up with numerous hypothetical pathways. Using the manometer he tested those hypotheses one by one. One hypothesis involving succinate, fumarate, and malate proved to be useful because all these molecules increased oxygen consumption in the pigeon breast muscle. In 1937 German biochemists Franz Koop and Carl Martinus had demonstrated a series of reactions using citrate that produced oxaloacetate. Krebs realised his chemicals could be the missing intermediates for such reaction. After four months of experimental works to fill the gap, Krebs and Johnson succeeded in establishing the sequence of the chemical cycle, which they called the "citric acid cycle".[25][26]

Krebs (TCA) cycle

[24][15] was established, and it was the first metabolic cycle to be discovered.ornithine cycle. He and Henseleit published their discovery in 1932. Thus the carbon dioxide and ammonia in the metabolic reactions of urea from catalyst Krebs started working on the possible method for the synthesis of arginine. Using his Warburg manometer, he mixed a slice of liver with purified ornithine and citrulline. He found that citrulline acted as a [23][22] could be the intermediate reactions.citrulline Based on this reaction, Krebs and Henseleit postulated that in living cells, similar reaction could occur, and that ornithine and [21]

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.